Solve for x, y
x = -\frac{8000}{7} = -1142\frac{6}{7} \approx -1142.857142857
y = \frac{78000}{7} = 11142\frac{6}{7} \approx 11142.857142857
Graph
Share
Copied to clipboard
x+y=10000,0.01x+0.08y=880
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+y=10000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-y+10000
Subtract y from both sides of the equation.
0.01\left(-y+10000\right)+0.08y=880
Substitute -y+10000 for x in the other equation, 0.01x+0.08y=880.
-0.01y+100+0.08y=880
Multiply 0.01 times -y+10000.
0.07y+100=880
Add -\frac{y}{100} to \frac{2y}{25}.
0.07y=780
Subtract 100 from both sides of the equation.
y=\frac{78000}{7}
Divide both sides of the equation by 0.07, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{78000}{7}+10000
Substitute \frac{78000}{7} for y in x=-y+10000. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{8000}{7}
Add 10000 to -\frac{78000}{7}.
x=-\frac{8000}{7},y=\frac{78000}{7}
The system is now solved.
x+y=10000,0.01x+0.08y=880
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\0.01&0.08\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10000\\880\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\0.01&0.08\end{matrix}\right))\left(\begin{matrix}1&1\\0.01&0.08\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.01&0.08\end{matrix}\right))\left(\begin{matrix}10000\\880\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\0.01&0.08\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.01&0.08\end{matrix}\right))\left(\begin{matrix}10000\\880\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\0.01&0.08\end{matrix}\right))\left(\begin{matrix}10000\\880\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{0.08}{0.08-0.01}&-\frac{1}{0.08-0.01}\\-\frac{0.01}{0.08-0.01}&\frac{1}{0.08-0.01}\end{matrix}\right)\left(\begin{matrix}10000\\880\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{7}&-\frac{100}{7}\\-\frac{1}{7}&\frac{100}{7}\end{matrix}\right)\left(\begin{matrix}10000\\880\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{7}\times 10000-\frac{100}{7}\times 880\\-\frac{1}{7}\times 10000+\frac{100}{7}\times 880\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8000}{7}\\\frac{78000}{7}\end{matrix}\right)
Do the arithmetic.
x=-\frac{8000}{7},y=\frac{78000}{7}
Extract the matrix elements x and y.
x+y=10000,0.01x+0.08y=880
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
0.01x+0.01y=0.01\times 10000,0.01x+0.08y=880
To make x and \frac{x}{100} equal, multiply all terms on each side of the first equation by 0.01 and all terms on each side of the second by 1.
0.01x+0.01y=100,0.01x+0.08y=880
Simplify.
0.01x-0.01x+0.01y-0.08y=100-880
Subtract 0.01x+0.08y=880 from 0.01x+0.01y=100 by subtracting like terms on each side of the equal sign.
0.01y-0.08y=100-880
Add \frac{x}{100} to -\frac{x}{100}. Terms \frac{x}{100} and -\frac{x}{100} cancel out, leaving an equation with only one variable that can be solved.
-0.07y=100-880
Add \frac{y}{100} to -\frac{2y}{25}.
-0.07y=-780
Add 100 to -880.
y=\frac{78000}{7}
Divide both sides of the equation by -0.07, which is the same as multiplying both sides by the reciprocal of the fraction.
0.01x+0.08\times \frac{78000}{7}=880
Substitute \frac{78000}{7} for y in 0.01x+0.08y=880. Because the resulting equation contains only one variable, you can solve for x directly.
0.01x+\frac{6240}{7}=880
Multiply 0.08 times \frac{78000}{7} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
0.01x=-\frac{80}{7}
Subtract \frac{6240}{7} from both sides of the equation.
x=-\frac{8000}{7}
Multiply both sides by 100.
x=-\frac{8000}{7},y=\frac{78000}{7}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}