Solve for x, y, z
x = \frac{95}{13} = 7\frac{4}{13} \approx 7.307692308
y = -\frac{44}{13} = -3\frac{5}{13} \approx -3.384615385
z = -\frac{193}{26} = -7\frac{11}{26} \approx -7.423076923
Share
Copied to clipboard
x=-3y+2z+12
Solve x+3y-2z=12 for x.
2\left(-3y+2z+12\right)+3y-4y=18 4\left(-3y+2z+12\right)+y+2z=11
Substitute -3y+2z+12 for x in the second and third equation.
y=\frac{6}{7}+\frac{4}{7}z z=-\frac{37}{10}+\frac{11}{10}y
Solve these equations for y and z respectively.
z=-\frac{37}{10}+\frac{11}{10}\left(\frac{6}{7}+\frac{4}{7}z\right)
Substitute \frac{6}{7}+\frac{4}{7}z for y in the equation z=-\frac{37}{10}+\frac{11}{10}y.
z=-\frac{193}{26}
Solve z=-\frac{37}{10}+\frac{11}{10}\left(\frac{6}{7}+\frac{4}{7}z\right) for z.
y=\frac{6}{7}+\frac{4}{7}\left(-\frac{193}{26}\right)
Substitute -\frac{193}{26} for z in the equation y=\frac{6}{7}+\frac{4}{7}z.
y=-\frac{44}{13}
Calculate y from y=\frac{6}{7}+\frac{4}{7}\left(-\frac{193}{26}\right).
x=-3\left(-\frac{44}{13}\right)+2\left(-\frac{193}{26}\right)+12
Substitute -\frac{44}{13} for y and -\frac{193}{26} for z in the equation x=-3y+2z+12.
x=\frac{95}{13}
Calculate x from x=-3\left(-\frac{44}{13}\right)+2\left(-\frac{193}{26}\right)+12.
x=\frac{95}{13} y=-\frac{44}{13} z=-\frac{193}{26}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}