Solve for x, y, z
x=\frac{10}{11}\approx 0.909090909
y=-\frac{1}{11}\approx -0.090909091
z = \frac{19}{11} = 1\frac{8}{11} \approx 1.727272727
Share
Copied to clipboard
x=-2y+z-1
Solve x+2y-z+1=0 for x.
2\left(-2y+z-1\right)+y-z=0 -2y+z-1+y+3z-6=0
Substitute -2y+z-1 for x in the second and third equation.
y=-\frac{2}{3}+\frac{1}{3}z z=\frac{7}{4}+\frac{1}{4}y
Solve these equations for y and z respectively.
z=\frac{7}{4}+\frac{1}{4}\left(-\frac{2}{3}+\frac{1}{3}z\right)
Substitute -\frac{2}{3}+\frac{1}{3}z for y in the equation z=\frac{7}{4}+\frac{1}{4}y.
z=\frac{19}{11}
Solve z=\frac{7}{4}+\frac{1}{4}\left(-\frac{2}{3}+\frac{1}{3}z\right) for z.
y=-\frac{2}{3}+\frac{1}{3}\times \frac{19}{11}
Substitute \frac{19}{11} for z in the equation y=-\frac{2}{3}+\frac{1}{3}z.
y=-\frac{1}{11}
Calculate y from y=-\frac{2}{3}+\frac{1}{3}\times \frac{19}{11}.
x=-2\left(-\frac{1}{11}\right)+\frac{19}{11}-1
Substitute -\frac{1}{11} for y and \frac{19}{11} for z in the equation x=-2y+z-1.
x=\frac{10}{11}
Calculate x from x=-2\left(-\frac{1}{11}\right)+\frac{19}{11}-1.
x=\frac{10}{11} y=-\frac{1}{11} z=\frac{19}{11}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}