Solve for x, y
x=375
y = \frac{125}{2} = 62\frac{1}{2} = 62.5
Graph
Share
Copied to clipboard
x+2y=500,3x-4y=875
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
x+2y=500
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
x=-2y+500
Subtract 2y from both sides of the equation.
3\left(-2y+500\right)-4y=875
Substitute -2y+500 for x in the other equation, 3x-4y=875.
-6y+1500-4y=875
Multiply 3 times -2y+500.
-10y+1500=875
Add -6y to -4y.
-10y=-625
Subtract 1500 from both sides of the equation.
y=\frac{125}{2}
Divide both sides by -10.
x=-2\times \frac{125}{2}+500
Substitute \frac{125}{2} for y in x=-2y+500. Because the resulting equation contains only one variable, you can solve for x directly.
x=-125+500
Multiply -2 times \frac{125}{2}.
x=375
Add 500 to -125.
x=375,y=\frac{125}{2}
The system is now solved.
x+2y=500,3x-4y=875
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&2\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}500\\875\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&2\\3&-4\end{matrix}\right))\left(\begin{matrix}1&2\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-4\end{matrix}\right))\left(\begin{matrix}500\\875\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&2\\3&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-4\end{matrix}\right))\left(\begin{matrix}500\\875\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&2\\3&-4\end{matrix}\right))\left(\begin{matrix}500\\875\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{-4-2\times 3}&-\frac{2}{-4-2\times 3}\\-\frac{3}{-4-2\times 3}&\frac{1}{-4-2\times 3}\end{matrix}\right)\left(\begin{matrix}500\\875\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&\frac{1}{5}\\\frac{3}{10}&-\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}500\\875\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\times 500+\frac{1}{5}\times 875\\\frac{3}{10}\times 500-\frac{1}{10}\times 875\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}375\\\frac{125}{2}\end{matrix}\right)
Do the arithmetic.
x=375,y=\frac{125}{2}
Extract the matrix elements x and y.
x+2y=500,3x-4y=875
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3x+3\times 2y=3\times 500,3x-4y=875
To make x and 3x equal, multiply all terms on each side of the first equation by 3 and all terms on each side of the second by 1.
3x+6y=1500,3x-4y=875
Simplify.
3x-3x+6y+4y=1500-875
Subtract 3x-4y=875 from 3x+6y=1500 by subtracting like terms on each side of the equal sign.
6y+4y=1500-875
Add 3x to -3x. Terms 3x and -3x cancel out, leaving an equation with only one variable that can be solved.
10y=1500-875
Add 6y to 4y.
10y=625
Add 1500 to -875.
y=\frac{125}{2}
Divide both sides by 10.
3x-4\times \frac{125}{2}=875
Substitute \frac{125}{2} for y in 3x-4y=875. Because the resulting equation contains only one variable, you can solve for x directly.
3x-250=875
Multiply -4 times \frac{125}{2}.
3x=1125
Add 250 to both sides of the equation.
x=375
Divide both sides by 3.
x=375,y=\frac{125}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}