Solve for x, y, z
x=9
y=11
z=17
Share
Copied to clipboard
x+2y+3z=82 2x-6=y+1 3x-9=z+1
Multiply each equation by the least common multiple of denominators in it. Simplify.
x=-2y-3z+82
Solve x+2y+3z=82 for x.
2\left(-2y-3z+82\right)-6=y+1 3\left(-2y-3z+82\right)-9=z+1
Substitute -2y-3z+82 for x in the second and third equation.
y=-\frac{6}{5}z+\frac{157}{5} z=\frac{118}{5}-\frac{3}{5}y
Solve these equations for y and z respectively.
z=\frac{118}{5}-\frac{3}{5}\left(-\frac{6}{5}z+\frac{157}{5}\right)
Substitute -\frac{6}{5}z+\frac{157}{5} for y in the equation z=\frac{118}{5}-\frac{3}{5}y.
z=17
Solve z=\frac{118}{5}-\frac{3}{5}\left(-\frac{6}{5}z+\frac{157}{5}\right) for z.
y=-\frac{6}{5}\times 17+\frac{157}{5}
Substitute 17 for z in the equation y=-\frac{6}{5}z+\frac{157}{5}.
y=11
Calculate y from y=-\frac{6}{5}\times 17+\frac{157}{5}.
x=-2\times 11-3\times 17+82
Substitute 11 for y and 17 for z in the equation x=-2y-3z+82.
x=9
Calculate x from x=-2\times 11-3\times 17+82.
x=9 y=11 z=17
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}