Skip to main content
Solve for s, q, p
Tick mark Image

Similar Problems from Web Search

Share

s+2\left(q-p\right)=5 3q+2s=-6p 12q+3p=s
Multiply each equation by the least common multiple of denominators in it. Simplify.
12q+3p=s 3q+2s=-6p s+2\left(q-p\right)=5
Reorder the equations.
s=12q+3p
Solve 12q+3p=s for s.
3q+2\left(12q+3p\right)=-6p 12q+3p+2\left(q-p\right)=5
Substitute 12q+3p for s in the second and third equation.
q=-\frac{4}{9}p p=-14q+5
Solve these equations for q and p respectively.
p=-14\left(-\frac{4}{9}\right)p+5
Substitute -\frac{4}{9}p for q in the equation p=-14q+5.
p=-\frac{45}{47}
Solve p=-14\left(-\frac{4}{9}\right)p+5 for p.
q=-\frac{4}{9}\left(-\frac{45}{47}\right)
Substitute -\frac{45}{47} for p in the equation q=-\frac{4}{9}p.
q=\frac{20}{47}
Calculate q from q=-\frac{4}{9}\left(-\frac{45}{47}\right).
s=12\times \frac{20}{47}+3\left(-\frac{45}{47}\right)
Substitute \frac{20}{47} for q and -\frac{45}{47} for p in the equation s=12q+3p.
s=\frac{105}{47}
Calculate s from s=12\times \frac{20}{47}+3\left(-\frac{45}{47}\right).
s=\frac{105}{47} q=\frac{20}{47} p=-\frac{45}{47}
The system is now solved.