Solve for s, q, p
s = \frac{105}{47} = 2\frac{11}{47} \approx 2.234042553
q=\frac{20}{47}\approx 0.425531915
p=-\frac{45}{47}\approx -0.957446809
Share
Copied to clipboard
s+2\left(q-p\right)=5 3q+2s=-6p 12q+3p=s
Multiply each equation by the least common multiple of denominators in it. Simplify.
12q+3p=s 3q+2s=-6p s+2\left(q-p\right)=5
Reorder the equations.
s=12q+3p
Solve 12q+3p=s for s.
3q+2\left(12q+3p\right)=-6p 12q+3p+2\left(q-p\right)=5
Substitute 12q+3p for s in the second and third equation.
q=-\frac{4}{9}p p=-14q+5
Solve these equations for q and p respectively.
p=-14\left(-\frac{4}{9}\right)p+5
Substitute -\frac{4}{9}p for q in the equation p=-14q+5.
p=-\frac{45}{47}
Solve p=-14\left(-\frac{4}{9}\right)p+5 for p.
q=-\frac{4}{9}\left(-\frac{45}{47}\right)
Substitute -\frac{45}{47} for p in the equation q=-\frac{4}{9}p.
q=\frac{20}{47}
Calculate q from q=-\frac{4}{9}\left(-\frac{45}{47}\right).
s=12\times \frac{20}{47}+3\left(-\frac{45}{47}\right)
Substitute \frac{20}{47} for q and -\frac{45}{47} for p in the equation s=12q+3p.
s=\frac{105}{47}
Calculate s from s=12\times \frac{20}{47}+3\left(-\frac{45}{47}\right).
s=\frac{105}{47} q=\frac{20}{47} p=-\frac{45}{47}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}