Solve for m, B
m=-10
B=-18
Share
Copied to clipboard
m-25-3m=-5
Consider the first equation. Subtract 3m from both sides.
-2m-25=-5
Combine m and -3m to get -2m.
-2m=-5+25
Add 25 to both sides.
-2m=20
Add -5 and 25 to get 20.
m=\frac{20}{-2}
Divide both sides by -2.
m=-10
Divide 20 by -2 to get -10.
B-\left(-10\right)=-8
Consider the second equation. Insert the known values of variables into the equation.
B+10=-8
Multiply -1 and -10 to get 10.
B=-8-10
Subtract 10 from both sides.
B=-18
Subtract 10 from -8 to get -18.
m=-10 B=-18
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}