Solve for k_1, k_2
k_{1}=-40
k_{2}=-42
Share
Copied to clipboard
200k_{1}+1400-300k_{2}=6000
Consider the second equation. Subtract 300k_{2} from both sides.
200k_{1}-300k_{2}=6000-1400
Subtract 1400 from both sides.
200k_{1}-300k_{2}=4600
Subtract 1400 from 6000 to get 4600.
k_{1}-k_{2}=2,200k_{1}-300k_{2}=4600
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
k_{1}-k_{2}=2
Choose one of the equations and solve it for k_{1} by isolating k_{1} on the left hand side of the equal sign.
k_{1}=k_{2}+2
Add k_{2} to both sides of the equation.
200\left(k_{2}+2\right)-300k_{2}=4600
Substitute k_{2}+2 for k_{1} in the other equation, 200k_{1}-300k_{2}=4600.
200k_{2}+400-300k_{2}=4600
Multiply 200 times k_{2}+2.
-100k_{2}+400=4600
Add 200k_{2} to -300k_{2}.
-100k_{2}=4200
Subtract 400 from both sides of the equation.
k_{2}=-42
Divide both sides by -100.
k_{1}=-42+2
Substitute -42 for k_{2} in k_{1}=k_{2}+2. Because the resulting equation contains only one variable, you can solve for k_{1} directly.
k_{1}=-40
Add 2 to -42.
k_{1}=-40,k_{2}=-42
The system is now solved.
200k_{1}+1400-300k_{2}=6000
Consider the second equation. Subtract 300k_{2} from both sides.
200k_{1}-300k_{2}=6000-1400
Subtract 1400 from both sides.
200k_{1}-300k_{2}=4600
Subtract 1400 from 6000 to get 4600.
k_{1}-k_{2}=2,200k_{1}-300k_{2}=4600
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-1\\200&-300\end{matrix}\right)\left(\begin{matrix}k_{1}\\k_{2}\end{matrix}\right)=\left(\begin{matrix}2\\4600\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-1\\200&-300\end{matrix}\right))\left(\begin{matrix}1&-1\\200&-300\end{matrix}\right)\left(\begin{matrix}k_{1}\\k_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\200&-300\end{matrix}\right))\left(\begin{matrix}2\\4600\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-1\\200&-300\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}k_{1}\\k_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\200&-300\end{matrix}\right))\left(\begin{matrix}2\\4600\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}k_{1}\\k_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\200&-300\end{matrix}\right))\left(\begin{matrix}2\\4600\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}k_{1}\\k_{2}\end{matrix}\right)=\left(\begin{matrix}-\frac{300}{-300-\left(-200\right)}&-\frac{-1}{-300-\left(-200\right)}\\-\frac{200}{-300-\left(-200\right)}&\frac{1}{-300-\left(-200\right)}\end{matrix}\right)\left(\begin{matrix}2\\4600\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}k_{1}\\k_{2}\end{matrix}\right)=\left(\begin{matrix}3&-\frac{1}{100}\\2&-\frac{1}{100}\end{matrix}\right)\left(\begin{matrix}2\\4600\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}k_{1}\\k_{2}\end{matrix}\right)=\left(\begin{matrix}3\times 2-\frac{1}{100}\times 4600\\2\times 2-\frac{1}{100}\times 4600\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}k_{1}\\k_{2}\end{matrix}\right)=\left(\begin{matrix}-40\\-42\end{matrix}\right)
Do the arithmetic.
k_{1}=-40,k_{2}=-42
Extract the matrix elements k_{1} and k_{2}.
200k_{1}+1400-300k_{2}=6000
Consider the second equation. Subtract 300k_{2} from both sides.
200k_{1}-300k_{2}=6000-1400
Subtract 1400 from both sides.
200k_{1}-300k_{2}=4600
Subtract 1400 from 6000 to get 4600.
k_{1}-k_{2}=2,200k_{1}-300k_{2}=4600
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
200k_{1}+200\left(-1\right)k_{2}=200\times 2,200k_{1}-300k_{2}=4600
To make k_{1} and 200k_{1} equal, multiply all terms on each side of the first equation by 200 and all terms on each side of the second by 1.
200k_{1}-200k_{2}=400,200k_{1}-300k_{2}=4600
Simplify.
200k_{1}-200k_{1}-200k_{2}+300k_{2}=400-4600
Subtract 200k_{1}-300k_{2}=4600 from 200k_{1}-200k_{2}=400 by subtracting like terms on each side of the equal sign.
-200k_{2}+300k_{2}=400-4600
Add 200k_{1} to -200k_{1}. Terms 200k_{1} and -200k_{1} cancel out, leaving an equation with only one variable that can be solved.
100k_{2}=400-4600
Add -200k_{2} to 300k_{2}.
100k_{2}=-4200
Add 400 to -4600.
k_{2}=-42
Divide both sides by 100.
200k_{1}-300\left(-42\right)=4600
Substitute -42 for k_{2} in 200k_{1}-300k_{2}=4600. Because the resulting equation contains only one variable, you can solve for k_{1} directly.
200k_{1}+12600=4600
Multiply -300 times -42.
200k_{1}=-8000
Subtract 12600 from both sides of the equation.
k_{1}=-40
Divide both sides by 200.
k_{1}=-40,k_{2}=-42
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}