Solve for f, a, v
f=10
a=-\frac{1}{5}=-0.2
v=50
Share
Copied to clipboard
10=\left(-a\right)\times 50
Consider the first equation. Insert the known values of variables into the equation.
\frac{10}{50}=-a
Divide both sides by 50.
\frac{1}{5}=-a
Reduce the fraction \frac{10}{50} to lowest terms by extracting and canceling out 10.
-a=\frac{1}{5}
Swap sides so that all variable terms are on the left hand side.
a=\frac{\frac{1}{5}}{-1}
Divide both sides by -1.
a=\frac{1}{5\left(-1\right)}
Express \frac{\frac{1}{5}}{-1} as a single fraction.
a=\frac{1}{-5}
Multiply 5 and -1 to get -5.
a=-\frac{1}{5}
Fraction \frac{1}{-5} can be rewritten as -\frac{1}{5} by extracting the negative sign.
f=10 a=-\frac{1}{5} v=50
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}