Solve for a, b
a=28
b=38
Share
Copied to clipboard
a-b=-10
Consider the first equation. Subtract b from both sides.
a-b=-10,7a+7b=462
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
a-b=-10
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
a=b-10
Add b to both sides of the equation.
7\left(b-10\right)+7b=462
Substitute b-10 for a in the other equation, 7a+7b=462.
7b-70+7b=462
Multiply 7 times b-10.
14b-70=462
Add 7b to 7b.
14b=532
Add 70 to both sides of the equation.
b=38
Divide both sides by 14.
a=38-10
Substitute 38 for b in a=b-10. Because the resulting equation contains only one variable, you can solve for a directly.
a=28
Add -10 to 38.
a=28,b=38
The system is now solved.
a-b=-10
Consider the first equation. Subtract b from both sides.
a-b=-10,7a+7b=462
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&-1\\7&7\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-10\\462\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&-1\\7&7\end{matrix}\right))\left(\begin{matrix}1&-1\\7&7\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\7&7\end{matrix}\right))\left(\begin{matrix}-10\\462\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&-1\\7&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\7&7\end{matrix}\right))\left(\begin{matrix}-10\\462\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\7&7\end{matrix}\right))\left(\begin{matrix}-10\\462\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{7}{7-\left(-7\right)}&-\frac{-1}{7-\left(-7\right)}\\-\frac{7}{7-\left(-7\right)}&\frac{1}{7-\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}-10\\462\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{14}\\-\frac{1}{2}&\frac{1}{14}\end{matrix}\right)\left(\begin{matrix}-10\\462\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\left(-10\right)+\frac{1}{14}\times 462\\-\frac{1}{2}\left(-10\right)+\frac{1}{14}\times 462\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}28\\38\end{matrix}\right)
Do the arithmetic.
a=28,b=38
Extract the matrix elements a and b.
a-b=-10
Consider the first equation. Subtract b from both sides.
a-b=-10,7a+7b=462
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
7a+7\left(-1\right)b=7\left(-10\right),7a+7b=462
To make a and 7a equal, multiply all terms on each side of the first equation by 7 and all terms on each side of the second by 1.
7a-7b=-70,7a+7b=462
Simplify.
7a-7a-7b-7b=-70-462
Subtract 7a+7b=462 from 7a-7b=-70 by subtracting like terms on each side of the equal sign.
-7b-7b=-70-462
Add 7a to -7a. Terms 7a and -7a cancel out, leaving an equation with only one variable that can be solved.
-14b=-70-462
Add -7b to -7b.
-14b=-532
Add -70 to -462.
b=38
Divide both sides by -14.
7a+7\times 38=462
Substitute 38 for b in 7a+7b=462. Because the resulting equation contains only one variable, you can solve for a directly.
7a+266=462
Multiply 7 times 38.
7a=196
Subtract 266 from both sides of the equation.
a=28
Divide both sides by 7.
a=28,b=38
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}