Solve for a, b, c
a=1
b=-2
c=0
Share
Copied to clipboard
a=-b-1
Solve a+b=-1 for a.
-b-1+c=-b-1 3\left(-b-1\right)+b=1
Substitute -b-1 for a in the second and third equation.
c=0 b=-2
Solve these equations for c and b respectively.
a=-\left(-2\right)-1
Substitute -2 for b in the equation a=-b-1.
a=1
Calculate a from a=-\left(-2\right)-1.
a=1 b=-2 c=0
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}