Solve for a, b, c
a = -\frac{41}{2} = -20\frac{1}{2} = -20.5
b = \frac{51}{2} = 25\frac{1}{2} = 25.5
c=102
Share
Copied to clipboard
c=4b a+b+c=107 b=5-a
Reorder the equations.
a+b+4b=107
Substitute 4b for c in the equation a+b+c=107.
b=-\frac{1}{5}a+\frac{107}{5} a=-b+5
Solve the second equation for b and the third equation for a.
a=-\left(-\frac{1}{5}a+\frac{107}{5}\right)+5
Substitute -\frac{1}{5}a+\frac{107}{5} for b in the equation a=-b+5.
a=-\frac{41}{2}
Solve a=-\left(-\frac{1}{5}a+\frac{107}{5}\right)+5 for a.
b=-\frac{1}{5}\left(-\frac{41}{2}\right)+\frac{107}{5}
Substitute -\frac{41}{2} for a in the equation b=-\frac{1}{5}a+\frac{107}{5}.
b=\frac{51}{2}
Calculate b from b=-\frac{1}{5}\left(-\frac{41}{2}\right)+\frac{107}{5}.
c=4\times \frac{51}{2}
Substitute \frac{51}{2} for b in the equation c=4b.
c=102
Calculate c from c=4\times \frac{51}{2}.
a=-\frac{41}{2} b=\frac{51}{2} c=102
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}