Solve for M, F
M=-120
F=220
Share
Copied to clipboard
M+F=100,2M+12F=2400
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
M+F=100
Choose one of the equations and solve it for M by isolating M on the left hand side of the equal sign.
M=-F+100
Subtract F from both sides of the equation.
2\left(-F+100\right)+12F=2400
Substitute -F+100 for M in the other equation, 2M+12F=2400.
-2F+200+12F=2400
Multiply 2 times -F+100.
10F+200=2400
Add -2F to 12F.
10F=2200
Subtract 200 from both sides of the equation.
F=220
Divide both sides by 10.
M=-220+100
Substitute 220 for F in M=-F+100. Because the resulting equation contains only one variable, you can solve for M directly.
M=-120
Add 100 to -220.
M=-120,F=220
The system is now solved.
M+F=100,2M+12F=2400
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\2&12\end{matrix}\right)\left(\begin{matrix}M\\F\end{matrix}\right)=\left(\begin{matrix}100\\2400\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\2&12\end{matrix}\right))\left(\begin{matrix}1&1\\2&12\end{matrix}\right)\left(\begin{matrix}M\\F\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&12\end{matrix}\right))\left(\begin{matrix}100\\2400\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\2&12\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}M\\F\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&12\end{matrix}\right))\left(\begin{matrix}100\\2400\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}M\\F\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&12\end{matrix}\right))\left(\begin{matrix}100\\2400\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}M\\F\end{matrix}\right)=\left(\begin{matrix}\frac{12}{12-2}&-\frac{1}{12-2}\\-\frac{2}{12-2}&\frac{1}{12-2}\end{matrix}\right)\left(\begin{matrix}100\\2400\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}M\\F\end{matrix}\right)=\left(\begin{matrix}\frac{6}{5}&-\frac{1}{10}\\-\frac{1}{5}&\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}100\\2400\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}M\\F\end{matrix}\right)=\left(\begin{matrix}\frac{6}{5}\times 100-\frac{1}{10}\times 2400\\-\frac{1}{5}\times 100+\frac{1}{10}\times 2400\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}M\\F\end{matrix}\right)=\left(\begin{matrix}-120\\220\end{matrix}\right)
Do the arithmetic.
M=-120,F=220
Extract the matrix elements M and F.
M+F=100,2M+12F=2400
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2M+2F=2\times 100,2M+12F=2400
To make M and 2M equal, multiply all terms on each side of the first equation by 2 and all terms on each side of the second by 1.
2M+2F=200,2M+12F=2400
Simplify.
2M-2M+2F-12F=200-2400
Subtract 2M+12F=2400 from 2M+2F=200 by subtracting like terms on each side of the equal sign.
2F-12F=200-2400
Add 2M to -2M. Terms 2M and -2M cancel out, leaving an equation with only one variable that can be solved.
-10F=200-2400
Add 2F to -12F.
-10F=-2200
Add 200 to -2400.
F=220
Divide both sides by -10.
2M+12\times 220=2400
Substitute 220 for F in 2M+12F=2400. Because the resulting equation contains only one variable, you can solve for M directly.
2M+2640=2400
Multiply 12 times 220.
2M=-240
Subtract 2640 from both sides of the equation.
M=-120
Divide both sides by 2.
M=-120,F=220
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}