Solve for A, B
A=0\text{, }B=-2
A=3\text{, }B=1
Share
Copied to clipboard
6A-6B=12,3B^{2}+A^{2}=12
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
6A-6B=12
Solve 6A-6B=12 for A by isolating A on the left hand side of the equal sign.
6A=6B+12
Subtract -6B from both sides of the equation.
A=B+2
Divide both sides by 6.
3B^{2}+\left(B+2\right)^{2}=12
Substitute B+2 for A in the other equation, 3B^{2}+A^{2}=12.
3B^{2}+B^{2}+4B+4=12
Square B+2.
4B^{2}+4B+4=12
Add 3B^{2} to B^{2}.
4B^{2}+4B-8=0
Subtract 12 from both sides of the equation.
B=\frac{-4±\sqrt{4^{2}-4\times 4\left(-8\right)}}{2\times 4}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3+1\times 1^{2} for a, 1\times 2\times 1\times 2 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
B=\frac{-4±\sqrt{16-4\times 4\left(-8\right)}}{2\times 4}
Square 1\times 2\times 1\times 2.
B=\frac{-4±\sqrt{16-16\left(-8\right)}}{2\times 4}
Multiply -4 times 3+1\times 1^{2}.
B=\frac{-4±\sqrt{16+128}}{2\times 4}
Multiply -16 times -8.
B=\frac{-4±\sqrt{144}}{2\times 4}
Add 16 to 128.
B=\frac{-4±12}{2\times 4}
Take the square root of 144.
B=\frac{-4±12}{8}
Multiply 2 times 3+1\times 1^{2}.
B=\frac{8}{8}
Now solve the equation B=\frac{-4±12}{8} when ± is plus. Add -4 to 12.
B=1
Divide 8 by 8.
B=-\frac{16}{8}
Now solve the equation B=\frac{-4±12}{8} when ± is minus. Subtract 12 from -4.
B=-2
Divide -16 by 8.
A=1+2
There are two solutions for B: 1 and -2. Substitute 1 for B in the equation A=B+2 to find the corresponding solution for A that satisfies both equations.
A=3
Add 1\times 1 to 2.
A=-2+2
Now substitute -2 for B in the equation A=B+2 and solve to find the corresponding solution for A that satisfies both equations.
A=0
Add -2 to 2.
A=3,B=1\text{ or }A=0,B=-2
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}