Solve for A, C
A = \frac{1341}{2} = 670\frac{1}{2} = 670.5
C = -\frac{1203}{2} = -601\frac{1}{2} = -601.5
Share
Copied to clipboard
A+C=69,6A+2C=2820
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
A+C=69
Choose one of the equations and solve it for A by isolating A on the left hand side of the equal sign.
A=-C+69
Subtract C from both sides of the equation.
6\left(-C+69\right)+2C=2820
Substitute -C+69 for A in the other equation, 6A+2C=2820.
-6C+414+2C=2820
Multiply 6 times -C+69.
-4C+414=2820
Add -6C to 2C.
-4C=2406
Subtract 414 from both sides of the equation.
C=-\frac{1203}{2}
Divide both sides by -4.
A=-\left(-\frac{1203}{2}\right)+69
Substitute -\frac{1203}{2} for C in A=-C+69. Because the resulting equation contains only one variable, you can solve for A directly.
A=\frac{1203}{2}+69
Multiply -1 times -\frac{1203}{2}.
A=\frac{1341}{2}
Add 69 to \frac{1203}{2}.
A=\frac{1341}{2},C=-\frac{1203}{2}
The system is now solved.
A+C=69,6A+2C=2820
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}1&1\\6&2\end{matrix}\right)\left(\begin{matrix}A\\C\end{matrix}\right)=\left(\begin{matrix}69\\2820\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}1&1\\6&2\end{matrix}\right))\left(\begin{matrix}1&1\\6&2\end{matrix}\right)\left(\begin{matrix}A\\C\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\6&2\end{matrix}\right))\left(\begin{matrix}69\\2820\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}1&1\\6&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}A\\C\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\6&2\end{matrix}\right))\left(\begin{matrix}69\\2820\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}A\\C\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\6&2\end{matrix}\right))\left(\begin{matrix}69\\2820\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}A\\C\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-6}&-\frac{1}{2-6}\\-\frac{6}{2-6}&\frac{1}{2-6}\end{matrix}\right)\left(\begin{matrix}69\\2820\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}A\\C\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{1}{4}\\\frac{3}{2}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}69\\2820\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}A\\C\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 69+\frac{1}{4}\times 2820\\\frac{3}{2}\times 69-\frac{1}{4}\times 2820\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}A\\C\end{matrix}\right)=\left(\begin{matrix}\frac{1341}{2}\\-\frac{1203}{2}\end{matrix}\right)
Do the arithmetic.
A=\frac{1341}{2},C=-\frac{1203}{2}
Extract the matrix elements A and C.
A+C=69,6A+2C=2820
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
6A+6C=6\times 69,6A+2C=2820
To make A and 6A equal, multiply all terms on each side of the first equation by 6 and all terms on each side of the second by 1.
6A+6C=414,6A+2C=2820
Simplify.
6A-6A+6C-2C=414-2820
Subtract 6A+2C=2820 from 6A+6C=414 by subtracting like terms on each side of the equal sign.
6C-2C=414-2820
Add 6A to -6A. Terms 6A and -6A cancel out, leaving an equation with only one variable that can be solved.
4C=414-2820
Add 6C to -2C.
4C=-2406
Add 414 to -2820.
C=-\frac{1203}{2}
Divide both sides by 4.
6A+2\left(-\frac{1203}{2}\right)=2820
Substitute -\frac{1203}{2} for C in 6A+2C=2820. Because the resulting equation contains only one variable, you can solve for A directly.
6A-1203=2820
Multiply 2 times -\frac{1203}{2}.
6A=4023
Add 1203 to both sides of the equation.
A=\frac{1341}{2}
Divide both sides by 6.
A=\frac{1341}{2},C=-\frac{1203}{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}