Solve for x, y
x=5
y=7
Graph
Share
Copied to clipboard
9x+12y=129,-16x-12y=-164
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
9x+12y=129
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
9x=-12y+129
Subtract 12y from both sides of the equation.
x=\frac{1}{9}\left(-12y+129\right)
Divide both sides by 9.
x=-\frac{4}{3}y+\frac{43}{3}
Multiply \frac{1}{9} times -12y+129.
-16\left(-\frac{4}{3}y+\frac{43}{3}\right)-12y=-164
Substitute \frac{-4y+43}{3} for x in the other equation, -16x-12y=-164.
\frac{64}{3}y-\frac{688}{3}-12y=-164
Multiply -16 times \frac{-4y+43}{3}.
\frac{28}{3}y-\frac{688}{3}=-164
Add \frac{64y}{3} to -12y.
\frac{28}{3}y=\frac{196}{3}
Add \frac{688}{3} to both sides of the equation.
y=7
Divide both sides of the equation by \frac{28}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{4}{3}\times 7+\frac{43}{3}
Substitute 7 for y in x=-\frac{4}{3}y+\frac{43}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-28+43}{3}
Multiply -\frac{4}{3} times 7.
x=5
Add \frac{43}{3} to -\frac{28}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=5,y=7
The system is now solved.
9x+12y=129,-16x-12y=-164
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}9&12\\-16&-12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}129\\-164\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}9&12\\-16&-12\end{matrix}\right))\left(\begin{matrix}9&12\\-16&-12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&12\\-16&-12\end{matrix}\right))\left(\begin{matrix}129\\-164\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}9&12\\-16&-12\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&12\\-16&-12\end{matrix}\right))\left(\begin{matrix}129\\-164\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}9&12\\-16&-12\end{matrix}\right))\left(\begin{matrix}129\\-164\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{12}{9\left(-12\right)-12\left(-16\right)}&-\frac{12}{9\left(-12\right)-12\left(-16\right)}\\-\frac{-16}{9\left(-12\right)-12\left(-16\right)}&\frac{9}{9\left(-12\right)-12\left(-16\right)}\end{matrix}\right)\left(\begin{matrix}129\\-164\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}&-\frac{1}{7}\\\frac{4}{21}&\frac{3}{28}\end{matrix}\right)\left(\begin{matrix}129\\-164\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{7}\times 129-\frac{1}{7}\left(-164\right)\\\frac{4}{21}\times 129+\frac{3}{28}\left(-164\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\7\end{matrix}\right)
Do the arithmetic.
x=5,y=7
Extract the matrix elements x and y.
9x+12y=129,-16x-12y=-164
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-16\times 9x-16\times 12y=-16\times 129,9\left(-16\right)x+9\left(-12\right)y=9\left(-164\right)
To make 9x and -16x equal, multiply all terms on each side of the first equation by -16 and all terms on each side of the second by 9.
-144x-192y=-2064,-144x-108y=-1476
Simplify.
-144x+144x-192y+108y=-2064+1476
Subtract -144x-108y=-1476 from -144x-192y=-2064 by subtracting like terms on each side of the equal sign.
-192y+108y=-2064+1476
Add -144x to 144x. Terms -144x and 144x cancel out, leaving an equation with only one variable that can be solved.
-84y=-2064+1476
Add -192y to 108y.
-84y=-588
Add -2064 to 1476.
y=7
Divide both sides by -84.
-16x-12\times 7=-164
Substitute 7 for y in -16x-12y=-164. Because the resulting equation contains only one variable, you can solve for x directly.
-16x-84=-164
Multiply -12 times 7.
-16x=-80
Add 84 to both sides of the equation.
x=5
Divide both sides by -16.
x=5,y=7
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}