Solve for x, y
x=-5
y=5
Graph
Share
Copied to clipboard
8x+6y=-10,-8x-5y=15
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
8x+6y=-10
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
8x=-6y-10
Subtract 6y from both sides of the equation.
x=\frac{1}{8}\left(-6y-10\right)
Divide both sides by 8.
x=-\frac{3}{4}y-\frac{5}{4}
Multiply \frac{1}{8} times -6y-10.
-8\left(-\frac{3}{4}y-\frac{5}{4}\right)-5y=15
Substitute \frac{-3y-5}{4} for x in the other equation, -8x-5y=15.
6y+10-5y=15
Multiply -8 times \frac{-3y-5}{4}.
y+10=15
Add 6y to -5y.
y=5
Subtract 10 from both sides of the equation.
x=-\frac{3}{4}\times 5-\frac{5}{4}
Substitute 5 for y in x=-\frac{3}{4}y-\frac{5}{4}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-15-5}{4}
Multiply -\frac{3}{4} times 5.
x=-5
Add -\frac{5}{4} to -\frac{15}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-5,y=5
The system is now solved.
8x+6y=-10,-8x-5y=15
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}8&6\\-8&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\15\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}8&6\\-8&-5\end{matrix}\right))\left(\begin{matrix}8&6\\-8&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&6\\-8&-5\end{matrix}\right))\left(\begin{matrix}-10\\15\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}8&6\\-8&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&6\\-8&-5\end{matrix}\right))\left(\begin{matrix}-10\\15\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}8&6\\-8&-5\end{matrix}\right))\left(\begin{matrix}-10\\15\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{8\left(-5\right)-6\left(-8\right)}&-\frac{6}{8\left(-5\right)-6\left(-8\right)}\\-\frac{-8}{8\left(-5\right)-6\left(-8\right)}&\frac{8}{8\left(-5\right)-6\left(-8\right)}\end{matrix}\right)\left(\begin{matrix}-10\\15\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{8}&-\frac{3}{4}\\1&1\end{matrix}\right)\left(\begin{matrix}-10\\15\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{8}\left(-10\right)-\frac{3}{4}\times 15\\-10+15\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\5\end{matrix}\right)
Do the arithmetic.
x=-5,y=5
Extract the matrix elements x and y.
8x+6y=-10,-8x-5y=15
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-8\times 8x-8\times 6y=-8\left(-10\right),8\left(-8\right)x+8\left(-5\right)y=8\times 15
To make 8x and -8x equal, multiply all terms on each side of the first equation by -8 and all terms on each side of the second by 8.
-64x-48y=80,-64x-40y=120
Simplify.
-64x+64x-48y+40y=80-120
Subtract -64x-40y=120 from -64x-48y=80 by subtracting like terms on each side of the equal sign.
-48y+40y=80-120
Add -64x to 64x. Terms -64x and 64x cancel out, leaving an equation with only one variable that can be solved.
-8y=80-120
Add -48y to 40y.
-8y=-40
Add 80 to -120.
y=5
Divide both sides by -8.
-8x-5\times 5=15
Substitute 5 for y in -8x-5y=15. Because the resulting equation contains only one variable, you can solve for x directly.
-8x-25=15
Multiply -5 times 5.
-8x=40
Add 25 to both sides of the equation.
x=-5
Divide both sides by -8.
x=-5,y=5
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}