Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

60x+25y=5700,x+y=130
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
60x+25y=5700
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
60x=-25y+5700
Subtract 25y from both sides of the equation.
x=\frac{1}{60}\left(-25y+5700\right)
Divide both sides by 60.
x=-\frac{5}{12}y+95
Multiply \frac{1}{60} times -25y+5700.
-\frac{5}{12}y+95+y=130
Substitute -\frac{5y}{12}+95 for x in the other equation, x+y=130.
\frac{7}{12}y+95=130
Add -\frac{5y}{12} to y.
\frac{7}{12}y=35
Subtract 95 from both sides of the equation.
y=60
Divide both sides of the equation by \frac{7}{12}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{5}{12}\times 60+95
Substitute 60 for y in x=-\frac{5}{12}y+95. Because the resulting equation contains only one variable, you can solve for x directly.
x=-25+95
Multiply -\frac{5}{12} times 60.
x=70
Add 95 to -25.
x=70,y=60
The system is now solved.
60x+25y=5700,x+y=130
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}60&25\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5700\\130\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}60&25\\1&1\end{matrix}\right))\left(\begin{matrix}60&25\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}60&25\\1&1\end{matrix}\right))\left(\begin{matrix}5700\\130\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}60&25\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}60&25\\1&1\end{matrix}\right))\left(\begin{matrix}5700\\130\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}60&25\\1&1\end{matrix}\right))\left(\begin{matrix}5700\\130\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{60-25}&-\frac{25}{60-25}\\-\frac{1}{60-25}&\frac{60}{60-25}\end{matrix}\right)\left(\begin{matrix}5700\\130\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{35}&-\frac{5}{7}\\-\frac{1}{35}&\frac{12}{7}\end{matrix}\right)\left(\begin{matrix}5700\\130\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{35}\times 5700-\frac{5}{7}\times 130\\-\frac{1}{35}\times 5700+\frac{12}{7}\times 130\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}70\\60\end{matrix}\right)
Do the arithmetic.
x=70,y=60
Extract the matrix elements x and y.
60x+25y=5700,x+y=130
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
60x+25y=5700,60x+60y=60\times 130
To make 60x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 60.
60x+25y=5700,60x+60y=7800
Simplify.
60x-60x+25y-60y=5700-7800
Subtract 60x+60y=7800 from 60x+25y=5700 by subtracting like terms on each side of the equal sign.
25y-60y=5700-7800
Add 60x to -60x. Terms 60x and -60x cancel out, leaving an equation with only one variable that can be solved.
-35y=5700-7800
Add 25y to -60y.
-35y=-2100
Add 5700 to -7800.
y=60
Divide both sides by -35.
x+60=130
Substitute 60 for y in x+y=130. Because the resulting equation contains only one variable, you can solve for x directly.
x=70
Subtract 60 from both sides of the equation.
x=70,y=60
The system is now solved.