Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x+4y=898,x+y=196
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
6x+4y=898
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
6x=-4y+898
Subtract 4y from both sides of the equation.
x=\frac{1}{6}\left(-4y+898\right)
Divide both sides by 6.
x=-\frac{2}{3}y+\frac{449}{3}
Multiply \frac{1}{6} times -4y+898.
-\frac{2}{3}y+\frac{449}{3}+y=196
Substitute \frac{-2y+449}{3} for x in the other equation, x+y=196.
\frac{1}{3}y+\frac{449}{3}=196
Add -\frac{2y}{3} to y.
\frac{1}{3}y=\frac{139}{3}
Subtract \frac{449}{3} from both sides of the equation.
y=139
Multiply both sides by 3.
x=-\frac{2}{3}\times 139+\frac{449}{3}
Substitute 139 for y in x=-\frac{2}{3}y+\frac{449}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-278+449}{3}
Multiply -\frac{2}{3} times 139.
x=57
Add \frac{449}{3} to -\frac{278}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=57,y=139
The system is now solved.
6x+4y=898,x+y=196
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}6&4\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}898\\196\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}6&4\\1&1\end{matrix}\right))\left(\begin{matrix}6&4\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&4\\1&1\end{matrix}\right))\left(\begin{matrix}898\\196\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}6&4\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&4\\1&1\end{matrix}\right))\left(\begin{matrix}898\\196\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&4\\1&1\end{matrix}\right))\left(\begin{matrix}898\\196\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6-4}&-\frac{4}{6-4}\\-\frac{1}{6-4}&\frac{6}{6-4}\end{matrix}\right)\left(\begin{matrix}898\\196\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-2\\-\frac{1}{2}&3\end{matrix}\right)\left(\begin{matrix}898\\196\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 898-2\times 196\\-\frac{1}{2}\times 898+3\times 196\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}57\\139\end{matrix}\right)
Do the arithmetic.
x=57,y=139
Extract the matrix elements x and y.
6x+4y=898,x+y=196
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
6x+4y=898,6x+6y=6\times 196
To make 6x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 6.
6x+4y=898,6x+6y=1176
Simplify.
6x-6x+4y-6y=898-1176
Subtract 6x+6y=1176 from 6x+4y=898 by subtracting like terms on each side of the equal sign.
4y-6y=898-1176
Add 6x to -6x. Terms 6x and -6x cancel out, leaving an equation with only one variable that can be solved.
-2y=898-1176
Add 4y to -6y.
-2y=-278
Add 898 to -1176.
y=139
Divide both sides by -2.
x+139=196
Substitute 139 for y in x+y=196. Because the resulting equation contains only one variable, you can solve for x directly.
x=57
Subtract 139 from both sides of the equation.
x=57,y=139
The system is now solved.