Solve for x, y
x=-517
y=526
Graph
Share
Copied to clipboard
6x+7y=580
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
6x+6y=54
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
6x+7y=580,6x+6y=54
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
6x+7y=580
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
6x=-7y+580
Subtract 7y from both sides of the equation.
x=\frac{1}{6}\left(-7y+580\right)
Divide both sides by 6.
x=-\frac{7}{6}y+\frac{290}{3}
Multiply \frac{1}{6} times -7y+580.
6\left(-\frac{7}{6}y+\frac{290}{3}\right)+6y=54
Substitute -\frac{7y}{6}+\frac{290}{3} for x in the other equation, 6x+6y=54.
-7y+580+6y=54
Multiply 6 times -\frac{7y}{6}+\frac{290}{3}.
-y+580=54
Add -7y to 6y.
-y=-526
Subtract 580 from both sides of the equation.
y=526
Divide both sides by -1.
x=-\frac{7}{6}\times 526+\frac{290}{3}
Substitute 526 for y in x=-\frac{7}{6}y+\frac{290}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-1841+290}{3}
Multiply -\frac{7}{6} times 526.
x=-517
Add \frac{290}{3} to -\frac{1841}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=-517,y=526
The system is now solved.
6x+7y=580
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
6x+6y=54
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
6x+7y=580,6x+6y=54
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}6&7\\6&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}580\\54\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}6&7\\6&6\end{matrix}\right))\left(\begin{matrix}6&7\\6&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&7\\6&6\end{matrix}\right))\left(\begin{matrix}580\\54\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}6&7\\6&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&7\\6&6\end{matrix}\right))\left(\begin{matrix}580\\54\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&7\\6&6\end{matrix}\right))\left(\begin{matrix}580\\54\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{6\times 6-7\times 6}&-\frac{7}{6\times 6-7\times 6}\\-\frac{6}{6\times 6-7\times 6}&\frac{6}{6\times 6-7\times 6}\end{matrix}\right)\left(\begin{matrix}580\\54\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&\frac{7}{6}\\1&-1\end{matrix}\right)\left(\begin{matrix}580\\54\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-580+\frac{7}{6}\times 54\\580-54\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-517\\526\end{matrix}\right)
Do the arithmetic.
x=-517,y=526
Extract the matrix elements x and y.
6x+7y=580
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
6x+6y=54
Consider the second equation. Swap sides so that all variable terms are on the left hand side.
6x+7y=580,6x+6y=54
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
6x-6x+7y-6y=580-54
Subtract 6x+6y=54 from 6x+7y=580 by subtracting like terms on each side of the equal sign.
7y-6y=580-54
Add 6x to -6x. Terms 6x and -6x cancel out, leaving an equation with only one variable that can be solved.
y=580-54
Add 7y to -6y.
y=526
Add 580 to -54.
6x+6\times 526=54
Substitute 526 for y in 6x+6y=54. Because the resulting equation contains only one variable, you can solve for x directly.
6x+3156=54
Multiply 6 times 526.
6x=-3102
Subtract 3156 from both sides of the equation.
x=-517
Divide both sides by 6.
x=-517,y=526
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}