Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

5x+5y=25,-15x+8y=-29
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
5x+5y=25
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
5x=-5y+25
Subtract 5y from both sides of the equation.
x=\frac{1}{5}\left(-5y+25\right)
Divide both sides by 5.
x=-y+5
Multiply \frac{1}{5} times -5y+25.
-15\left(-y+5\right)+8y=-29
Substitute -y+5 for x in the other equation, -15x+8y=-29.
15y-75+8y=-29
Multiply -15 times -y+5.
23y-75=-29
Add 15y to 8y.
23y=46
Add 75 to both sides of the equation.
y=2
Divide both sides by 23.
x=-2+5
Substitute 2 for y in x=-y+5. Because the resulting equation contains only one variable, you can solve for x directly.
x=3
Add 5 to -2.
x=3,y=2
The system is now solved.
5x+5y=25,-15x+8y=-29
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}5&5\\-15&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25\\-29\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}5&5\\-15&8\end{matrix}\right))\left(\begin{matrix}5&5\\-15&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&5\\-15&8\end{matrix}\right))\left(\begin{matrix}25\\-29\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}5&5\\-15&8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&5\\-15&8\end{matrix}\right))\left(\begin{matrix}25\\-29\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&5\\-15&8\end{matrix}\right))\left(\begin{matrix}25\\-29\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{5\times 8-5\left(-15\right)}&-\frac{5}{5\times 8-5\left(-15\right)}\\-\frac{-15}{5\times 8-5\left(-15\right)}&\frac{5}{5\times 8-5\left(-15\right)}\end{matrix}\right)\left(\begin{matrix}25\\-29\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{115}&-\frac{1}{23}\\\frac{3}{23}&\frac{1}{23}\end{matrix}\right)\left(\begin{matrix}25\\-29\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{115}\times 25-\frac{1}{23}\left(-29\right)\\\frac{3}{23}\times 25+\frac{1}{23}\left(-29\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
Do the arithmetic.
x=3,y=2
Extract the matrix elements x and y.
5x+5y=25,-15x+8y=-29
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-15\times 5x-15\times 5y=-15\times 25,5\left(-15\right)x+5\times 8y=5\left(-29\right)
To make 5x and -15x equal, multiply all terms on each side of the first equation by -15 and all terms on each side of the second by 5.
-75x-75y=-375,-75x+40y=-145
Simplify.
-75x+75x-75y-40y=-375+145
Subtract -75x+40y=-145 from -75x-75y=-375 by subtracting like terms on each side of the equal sign.
-75y-40y=-375+145
Add -75x to 75x. Terms -75x and 75x cancel out, leaving an equation with only one variable that can be solved.
-115y=-375+145
Add -75y to -40y.
-115y=-230
Add -375 to 145.
y=2
Divide both sides by -115.
-15x+8\times 2=-29
Substitute 2 for y in -15x+8y=-29. Because the resulting equation contains only one variable, you can solve for x directly.
-15x+16=-29
Multiply 8 times 2.
-15x=-45
Subtract 16 from both sides of the equation.
x=3
Divide both sides by -15.
x=3,y=2
The system is now solved.