Solve for x, y
x=40
y=25
Graph
Share
Copied to clipboard
35x+15y=1775,x+y=65
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
35x+15y=1775
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
35x=-15y+1775
Subtract 15y from both sides of the equation.
x=\frac{1}{35}\left(-15y+1775\right)
Divide both sides by 35.
x=-\frac{3}{7}y+\frac{355}{7}
Multiply \frac{1}{35} times -15y+1775.
-\frac{3}{7}y+\frac{355}{7}+y=65
Substitute \frac{-3y+355}{7} for x in the other equation, x+y=65.
\frac{4}{7}y+\frac{355}{7}=65
Add -\frac{3y}{7} to y.
\frac{4}{7}y=\frac{100}{7}
Subtract \frac{355}{7} from both sides of the equation.
y=25
Divide both sides of the equation by \frac{4}{7}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{3}{7}\times 25+\frac{355}{7}
Substitute 25 for y in x=-\frac{3}{7}y+\frac{355}{7}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-75+355}{7}
Multiply -\frac{3}{7} times 25.
x=40
Add \frac{355}{7} to -\frac{75}{7} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=40,y=25
The system is now solved.
35x+15y=1775,x+y=65
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}35&15\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1775\\65\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}35&15\\1&1\end{matrix}\right))\left(\begin{matrix}35&15\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}35&15\\1&1\end{matrix}\right))\left(\begin{matrix}1775\\65\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}35&15\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}35&15\\1&1\end{matrix}\right))\left(\begin{matrix}1775\\65\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}35&15\\1&1\end{matrix}\right))\left(\begin{matrix}1775\\65\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{35-15}&-\frac{15}{35-15}\\-\frac{1}{35-15}&\frac{35}{35-15}\end{matrix}\right)\left(\begin{matrix}1775\\65\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}&-\frac{3}{4}\\-\frac{1}{20}&\frac{7}{4}\end{matrix}\right)\left(\begin{matrix}1775\\65\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}\times 1775-\frac{3}{4}\times 65\\-\frac{1}{20}\times 1775+\frac{7}{4}\times 65\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}40\\25\end{matrix}\right)
Do the arithmetic.
x=40,y=25
Extract the matrix elements x and y.
35x+15y=1775,x+y=65
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
35x+15y=1775,35x+35y=35\times 65
To make 35x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 35.
35x+15y=1775,35x+35y=2275
Simplify.
35x-35x+15y-35y=1775-2275
Subtract 35x+35y=2275 from 35x+15y=1775 by subtracting like terms on each side of the equal sign.
15y-35y=1775-2275
Add 35x to -35x. Terms 35x and -35x cancel out, leaving an equation with only one variable that can be solved.
-20y=1775-2275
Add 15y to -35y.
-20y=-500
Add 1775 to -2275.
y=25
Divide both sides by -20.
x+25=65
Substitute 25 for y in x+y=65. Because the resulting equation contains only one variable, you can solve for x directly.
x=40
Subtract 25 from both sides of the equation.
x=40,y=25
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}