Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x-7y=15,17x+6y=192
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x-7y=15
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=7y+15
Add 7y to both sides of the equation.
x=\frac{1}{3}\left(7y+15\right)
Divide both sides by 3.
x=\frac{7}{3}y+5
Multiply \frac{1}{3} times 7y+15.
17\left(\frac{7}{3}y+5\right)+6y=192
Substitute \frac{7y}{3}+5 for x in the other equation, 17x+6y=192.
\frac{119}{3}y+85+6y=192
Multiply 17 times \frac{7y}{3}+5.
\frac{137}{3}y+85=192
Add \frac{119y}{3} to 6y.
\frac{137}{3}y=107
Subtract 85 from both sides of the equation.
y=\frac{321}{137}
Divide both sides of the equation by \frac{137}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{7}{3}\times \frac{321}{137}+5
Substitute \frac{321}{137} for y in x=\frac{7}{3}y+5. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{749}{137}+5
Multiply \frac{7}{3} times \frac{321}{137} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{1434}{137}
Add 5 to \frac{749}{137}.
x=\frac{1434}{137},y=\frac{321}{137}
The system is now solved.
3x-7y=15,17x+6y=192
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&-7\\17&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\192\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&-7\\17&6\end{matrix}\right))\left(\begin{matrix}3&-7\\17&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\17&6\end{matrix}\right))\left(\begin{matrix}15\\192\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&-7\\17&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\17&6\end{matrix}\right))\left(\begin{matrix}15\\192\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-7\\17&6\end{matrix}\right))\left(\begin{matrix}15\\192\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{3\times 6-\left(-7\times 17\right)}&-\frac{-7}{3\times 6-\left(-7\times 17\right)}\\-\frac{17}{3\times 6-\left(-7\times 17\right)}&\frac{3}{3\times 6-\left(-7\times 17\right)}\end{matrix}\right)\left(\begin{matrix}15\\192\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{137}&\frac{7}{137}\\-\frac{17}{137}&\frac{3}{137}\end{matrix}\right)\left(\begin{matrix}15\\192\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{137}\times 15+\frac{7}{137}\times 192\\-\frac{17}{137}\times 15+\frac{3}{137}\times 192\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1434}{137}\\\frac{321}{137}\end{matrix}\right)
Do the arithmetic.
x=\frac{1434}{137},y=\frac{321}{137}
Extract the matrix elements x and y.
3x-7y=15,17x+6y=192
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
17\times 3x+17\left(-7\right)y=17\times 15,3\times 17x+3\times 6y=3\times 192
To make 3x and 17x equal, multiply all terms on each side of the first equation by 17 and all terms on each side of the second by 3.
51x-119y=255,51x+18y=576
Simplify.
51x-51x-119y-18y=255-576
Subtract 51x+18y=576 from 51x-119y=255 by subtracting like terms on each side of the equal sign.
-119y-18y=255-576
Add 51x to -51x. Terms 51x and -51x cancel out, leaving an equation with only one variable that can be solved.
-137y=255-576
Add -119y to -18y.
-137y=-321
Add 255 to -576.
y=\frac{321}{137}
Divide both sides by -137.
17x+6\times \frac{321}{137}=192
Substitute \frac{321}{137} for y in 17x+6y=192. Because the resulting equation contains only one variable, you can solve for x directly.
17x+\frac{1926}{137}=192
Multiply 6 times \frac{321}{137}.
17x=\frac{24378}{137}
Subtract \frac{1926}{137} from both sides of the equation.
x=\frac{1434}{137}
Divide both sides by 17.
x=\frac{1434}{137},y=\frac{321}{137}
The system is now solved.