Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

x-y=18
Consider the second equation. Subtract y from both sides.
3x+3y=834,x-y=18
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
3x+3y=834
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
3x=-3y+834
Subtract 3y from both sides of the equation.
x=\frac{1}{3}\left(-3y+834\right)
Divide both sides by 3.
x=-y+278
Multiply \frac{1}{3} times -3y+834.
-y+278-y=18
Substitute -y+278 for x in the other equation, x-y=18.
-2y+278=18
Add -y to -y.
-2y=-260
Subtract 278 from both sides of the equation.
y=130
Divide both sides by -2.
x=-130+278
Substitute 130 for y in x=-y+278. Because the resulting equation contains only one variable, you can solve for x directly.
x=148
Add 278 to -130.
x=148,y=130
The system is now solved.
x-y=18
Consider the second equation. Subtract y from both sides.
3x+3y=834,x-y=18
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}3&3\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}834\\18\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}3&3\\1&-1\end{matrix}\right))\left(\begin{matrix}3&3\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&3\\1&-1\end{matrix}\right))\left(\begin{matrix}834\\18\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}3&3\\1&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&3\\1&-1\end{matrix}\right))\left(\begin{matrix}834\\18\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&3\\1&-1\end{matrix}\right))\left(\begin{matrix}834\\18\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-3}&-\frac{3}{3\left(-1\right)-3}\\-\frac{1}{3\left(-1\right)-3}&\frac{3}{3\left(-1\right)-3}\end{matrix}\right)\left(\begin{matrix}834\\18\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{2}\\\frac{1}{6}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}834\\18\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 834+\frac{1}{2}\times 18\\\frac{1}{6}\times 834-\frac{1}{2}\times 18\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}148\\130\end{matrix}\right)
Do the arithmetic.
x=148,y=130
Extract the matrix elements x and y.
x-y=18
Consider the second equation. Subtract y from both sides.
3x+3y=834,x-y=18
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
3x+3y=834,3x+3\left(-1\right)y=3\times 18
To make 3x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 3.
3x+3y=834,3x-3y=54
Simplify.
3x-3x+3y+3y=834-54
Subtract 3x-3y=54 from 3x+3y=834 by subtracting like terms on each side of the equal sign.
3y+3y=834-54
Add 3x to -3x. Terms 3x and -3x cancel out, leaving an equation with only one variable that can be solved.
6y=834-54
Add 3y to 3y.
6y=780
Add 834 to -54.
y=130
Divide both sides by 6.
x-130=18
Substitute 130 for y in x-y=18. Because the resulting equation contains only one variable, you can solve for x directly.
x=148
Add 130 to both sides of the equation.
x=148,y=130
The system is now solved.