Solve for x, y, z
x = \frac{8}{7} = 1\frac{1}{7} \approx 1.142857143
y = \frac{25}{14} = 1\frac{11}{14} \approx 1.785714286
z=-\frac{1}{7}\approx -0.142857143
Share
Copied to clipboard
z+x=1 2y+4z=3 3x+2y=7
Reorder the equations.
x=-z+1
Solve z+x=1 for x.
3\left(-z+1\right)+2y=7
Substitute -z+1 for x in the equation 3x+2y=7.
y=-2z+\frac{3}{2} z=-\frac{4}{3}+\frac{2}{3}y
Solve the second equation for y and the third equation for z.
z=-\frac{4}{3}+\frac{2}{3}\left(-2z+\frac{3}{2}\right)
Substitute -2z+\frac{3}{2} for y in the equation z=-\frac{4}{3}+\frac{2}{3}y.
z=-\frac{1}{7}
Solve z=-\frac{4}{3}+\frac{2}{3}\left(-2z+\frac{3}{2}\right) for z.
y=-2\left(-\frac{1}{7}\right)+\frac{3}{2}
Substitute -\frac{1}{7} for z in the equation y=-2z+\frac{3}{2}.
y=\frac{25}{14}
Calculate y from y=-2\left(-\frac{1}{7}\right)+\frac{3}{2}.
x=-\left(-\frac{1}{7}\right)+1
Substitute -\frac{1}{7} for z in the equation x=-z+1.
x=\frac{8}{7}
Calculate x from x=-\left(-\frac{1}{7}\right)+1.
x=\frac{8}{7} y=\frac{25}{14} z=-\frac{1}{7}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}