Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

4x+7y=27
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
y-2x=0
Consider the second equation. Subtract 2x from both sides.
4x+7y=27,-2x+y=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
4x+7y=27
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
4x=-7y+27
Subtract 7y from both sides of the equation.
x=\frac{1}{4}\left(-7y+27\right)
Divide both sides by 4.
x=-\frac{7}{4}y+\frac{27}{4}
Multiply \frac{1}{4} times -7y+27.
-2\left(-\frac{7}{4}y+\frac{27}{4}\right)+y=0
Substitute \frac{-7y+27}{4} for x in the other equation, -2x+y=0.
\frac{7}{2}y-\frac{27}{2}+y=0
Multiply -2 times \frac{-7y+27}{4}.
\frac{9}{2}y-\frac{27}{2}=0
Add \frac{7y}{2} to y.
\frac{9}{2}y=\frac{27}{2}
Add \frac{27}{2} to both sides of the equation.
y=3
Divide both sides of the equation by \frac{9}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{7}{4}\times 3+\frac{27}{4}
Substitute 3 for y in x=-\frac{7}{4}y+\frac{27}{4}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{-21+27}{4}
Multiply -\frac{7}{4} times 3.
x=\frac{3}{2}
Add \frac{27}{4} to -\frac{21}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{3}{2},y=3
The system is now solved.
4x+7y=27
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
y-2x=0
Consider the second equation. Subtract 2x from both sides.
4x+7y=27,-2x+y=0
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}4&7\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}27\\0\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}4&7\\-2&1\end{matrix}\right))\left(\begin{matrix}4&7\\-2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&7\\-2&1\end{matrix}\right))\left(\begin{matrix}27\\0\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}4&7\\-2&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&7\\-2&1\end{matrix}\right))\left(\begin{matrix}27\\0\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&7\\-2&1\end{matrix}\right))\left(\begin{matrix}27\\0\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-7\left(-2\right)}&-\frac{7}{4-7\left(-2\right)}\\-\frac{-2}{4-7\left(-2\right)}&\frac{4}{4-7\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}27\\0\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{18}&-\frac{7}{18}\\\frac{1}{9}&\frac{2}{9}\end{matrix}\right)\left(\begin{matrix}27\\0\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{18}\times 27\\\frac{1}{9}\times 27\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\3\end{matrix}\right)
Do the arithmetic.
x=\frac{3}{2},y=3
Extract the matrix elements x and y.
4x+7y=27
Consider the first equation. Swap sides so that all variable terms are on the left hand side.
y-2x=0
Consider the second equation. Subtract 2x from both sides.
4x+7y=27,-2x+y=0
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-2\times 4x-2\times 7y=-2\times 27,4\left(-2\right)x+4y=0
To make 4x and -2x equal, multiply all terms on each side of the first equation by -2 and all terms on each side of the second by 4.
-8x-14y=-54,-8x+4y=0
Simplify.
-8x+8x-14y-4y=-54
Subtract -8x+4y=0 from -8x-14y=-54 by subtracting like terms on each side of the equal sign.
-14y-4y=-54
Add -8x to 8x. Terms -8x and 8x cancel out, leaving an equation with only one variable that can be solved.
-18y=-54
Add -14y to -4y.
y=3
Divide both sides by -18.
-2x+3=0
Substitute 3 for y in -2x+y=0. Because the resulting equation contains only one variable, you can solve for x directly.
-2x=-3
Subtract 3 from both sides of the equation.
x=\frac{3}{2}
Divide both sides by -2.
x=\frac{3}{2},y=3
The system is now solved.