Solve for x, y
x=125000
y=75000
Graph
Share
Copied to clipboard
2x+3y=475000,x+2y=275000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
2x+3y=475000
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
2x=-3y+475000
Subtract 3y from both sides of the equation.
x=\frac{1}{2}\left(-3y+475000\right)
Divide both sides by 2.
x=-\frac{3}{2}y+237500
Multiply \frac{1}{2} times -3y+475000.
-\frac{3}{2}y+237500+2y=275000
Substitute -\frac{3y}{2}+237500 for x in the other equation, x+2y=275000.
\frac{1}{2}y+237500=275000
Add -\frac{3y}{2} to 2y.
\frac{1}{2}y=37500
Subtract 237500 from both sides of the equation.
y=75000
Multiply both sides by 2.
x=-\frac{3}{2}\times 75000+237500
Substitute 75000 for y in x=-\frac{3}{2}y+237500. Because the resulting equation contains only one variable, you can solve for x directly.
x=-112500+237500
Multiply -\frac{3}{2} times 75000.
x=125000
Add 237500 to -112500.
x=125000,y=75000
The system is now solved.
2x+3y=475000,x+2y=275000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}2&3\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}475000\\275000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}2&3\\1&2\end{matrix}\right))\left(\begin{matrix}2&3\\1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&2\end{matrix}\right))\left(\begin{matrix}475000\\275000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}2&3\\1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&2\end{matrix}\right))\left(\begin{matrix}475000\\275000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\1&2\end{matrix}\right))\left(\begin{matrix}475000\\275000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-3}&-\frac{3}{2\times 2-3}\\-\frac{1}{2\times 2-3}&\frac{2}{2\times 2-3}\end{matrix}\right)\left(\begin{matrix}475000\\275000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-3\\-1&2\end{matrix}\right)\left(\begin{matrix}475000\\275000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\times 475000-3\times 275000\\-475000+2\times 275000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}125000\\75000\end{matrix}\right)
Do the arithmetic.
x=125000,y=75000
Extract the matrix elements x and y.
2x+3y=475000,x+2y=275000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
2x+3y=475000,2x+2\times 2y=2\times 275000
To make 2x and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 2.
2x+3y=475000,2x+4y=550000
Simplify.
2x-2x+3y-4y=475000-550000
Subtract 2x+4y=550000 from 2x+3y=475000 by subtracting like terms on each side of the equal sign.
3y-4y=475000-550000
Add 2x to -2x. Terms 2x and -2x cancel out, leaving an equation with only one variable that can be solved.
-y=475000-550000
Add 3y to -4y.
-y=-75000
Add 475000 to -550000.
y=75000
Divide both sides by -1.
x+2\times 75000=275000
Substitute 75000 for y in x+2y=275000. Because the resulting equation contains only one variable, you can solve for x directly.
x+150000=275000
Multiply 2 times 75000.
x=125000
Subtract 150000 from both sides of the equation.
x=125000,y=75000
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}