Solve for x, μ, λ
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
\mu =-1
\lambda =1
Share
Copied to clipboard
\lambda +\mu =0 2\lambda -4\mu =6 2x+2\mu =1
Reorder the equations.
\mu =-\lambda
Solve \lambda +\mu =0 for \mu .
2\lambda -4\left(-1\right)\lambda =6 2x+2\left(-1\right)\lambda =1
Substitute -\lambda for \mu in the second and third equation.
\lambda =1 x=\lambda +\frac{1}{2}
Solve these equations for \lambda and x respectively.
x=1+\frac{1}{2}
Substitute 1 for \lambda in the equation x=\lambda +\frac{1}{2}.
x=\frac{3}{2}
Calculate x from x=1+\frac{1}{2}.
\mu =-1
Substitute 1 for \lambda in the equation \mu =-\lambda .
x=\frac{3}{2} \mu =-1 \lambda =1
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}