Solve for x, y
y = \frac{8000}{13} = 615\frac{5}{13} \approx 615.384615385
Graph
Share
Copied to clipboard
12000=65x
Consider the first equation. Combine 20x and 45x to get 65x.
65x=12000
Swap sides so that all variable terms are on the left hand side.
x=\frac{12000}{65}
Divide both sides by 65.
x=\frac{2400}{13}
Reduce the fraction \frac{12000}{65} to lowest terms by extracting and canceling out 5.
y=10\left(800-4\times \frac{2400}{13}\right)
Consider the second equation. Insert the known values of variables into the equation.
y=10\left(800-\frac{9600}{13}\right)
Multiply -4 and \frac{2400}{13} to get -\frac{9600}{13}.
y=10\times \frac{800}{13}
Subtract \frac{9600}{13} from 800 to get \frac{800}{13}.
y=\frac{8000}{13}
Multiply 10 and \frac{800}{13} to get \frac{8000}{13}.
x=\frac{2400}{13} y=\frac{8000}{13}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}