Solve for x, y
x = \frac{61}{4} = 15\frac{1}{4} = 15.25
y=-87
Graph
Share
Copied to clipboard
x+\frac{19}{4}=\frac{320}{16}
Consider the second equation. Divide both sides by 16.
x+\frac{19}{4}=20
Divide 320 by 16 to get 20.
x=20-\frac{19}{4}
Subtract \frac{19}{4} from both sides.
x=\frac{61}{4}
Subtract \frac{19}{4} from 20 to get \frac{61}{4}.
12\times \frac{61}{4}+y=96
Consider the first equation. Insert the known values of variables into the equation.
183+y=96
Multiply 12 and \frac{61}{4} to get 183.
y=96-183
Subtract 183 from both sides.
y=-87
Subtract 183 from 96 to get -87.
x=\frac{61}{4} y=-87
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}