Solve for x, y
x=1238
y=-144
Graph
Share
Copied to clipboard
12x+4y=14280,8x+6y=9040
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
12x+4y=14280
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
12x=-4y+14280
Subtract 4y from both sides of the equation.
x=\frac{1}{12}\left(-4y+14280\right)
Divide both sides by 12.
x=-\frac{1}{3}y+1190
Multiply \frac{1}{12} times -4y+14280.
8\left(-\frac{1}{3}y+1190\right)+6y=9040
Substitute -\frac{y}{3}+1190 for x in the other equation, 8x+6y=9040.
-\frac{8}{3}y+9520+6y=9040
Multiply 8 times -\frac{y}{3}+1190.
\frac{10}{3}y+9520=9040
Add -\frac{8y}{3} to 6y.
\frac{10}{3}y=-480
Subtract 9520 from both sides of the equation.
y=-144
Divide both sides of the equation by \frac{10}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{1}{3}\left(-144\right)+1190
Substitute -144 for y in x=-\frac{1}{3}y+1190. Because the resulting equation contains only one variable, you can solve for x directly.
x=48+1190
Multiply -\frac{1}{3} times -144.
x=1238
Add 1190 to 48.
x=1238,y=-144
The system is now solved.
12x+4y=14280,8x+6y=9040
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}12&4\\8&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14280\\9040\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}12&4\\8&6\end{matrix}\right))\left(\begin{matrix}12&4\\8&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12&4\\8&6\end{matrix}\right))\left(\begin{matrix}14280\\9040\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}12&4\\8&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12&4\\8&6\end{matrix}\right))\left(\begin{matrix}14280\\9040\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12&4\\8&6\end{matrix}\right))\left(\begin{matrix}14280\\9040\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{12\times 6-4\times 8}&-\frac{4}{12\times 6-4\times 8}\\-\frac{8}{12\times 6-4\times 8}&\frac{12}{12\times 6-4\times 8}\end{matrix}\right)\left(\begin{matrix}14280\\9040\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{20}&-\frac{1}{10}\\-\frac{1}{5}&\frac{3}{10}\end{matrix}\right)\left(\begin{matrix}14280\\9040\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{20}\times 14280-\frac{1}{10}\times 9040\\-\frac{1}{5}\times 14280+\frac{3}{10}\times 9040\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1238\\-144\end{matrix}\right)
Do the arithmetic.
x=1238,y=-144
Extract the matrix elements x and y.
12x+4y=14280,8x+6y=9040
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
8\times 12x+8\times 4y=8\times 14280,12\times 8x+12\times 6y=12\times 9040
To make 12x and 8x equal, multiply all terms on each side of the first equation by 8 and all terms on each side of the second by 12.
96x+32y=114240,96x+72y=108480
Simplify.
96x-96x+32y-72y=114240-108480
Subtract 96x+72y=108480 from 96x+32y=114240 by subtracting like terms on each side of the equal sign.
32y-72y=114240-108480
Add 96x to -96x. Terms 96x and -96x cancel out, leaving an equation with only one variable that can be solved.
-40y=114240-108480
Add 32y to -72y.
-40y=5760
Add 114240 to -108480.
y=-144
Divide both sides by -40.
8x+6\left(-144\right)=9040
Substitute -144 for y in 8x+6y=9040. Because the resulting equation contains only one variable, you can solve for x directly.
8x-864=9040
Multiply 6 times -144.
8x=9904
Add 864 to both sides of the equation.
x=1238
Divide both sides by 8.
x=1238,y=-144
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}