Skip to main content
Solve for x_1, x_2, x_3
Tick mark Image

Similar Problems from Web Search

Share

x_{1}=-\frac{13}{11}x_{2}-\frac{4}{11}x_{3}+\frac{37}{11}
Solve 11x_{1}+13x_{2}+4x_{3}=37 for x_{1}.
12\left(-\frac{13}{11}x_{2}-\frac{4}{11}x_{3}+\frac{37}{11}\right)+14x_{2}+5x_{3}=40 9\left(-\frac{13}{11}x_{2}-\frac{4}{11}x_{3}+\frac{37}{11}\right)+3x_{2}+3x_{3}=15
Substitute -\frac{13}{11}x_{2}-\frac{4}{11}x_{3}+\frac{37}{11} for x_{1} in the second and third equation.
x_{2}=2+\frac{7}{2}x_{3} x_{3}=56-28x_{2}
Solve these equations for x_{2} and x_{3} respectively.
x_{3}=56-28\left(2+\frac{7}{2}x_{3}\right)
Substitute 2+\frac{7}{2}x_{3} for x_{2} in the equation x_{3}=56-28x_{2}.
x_{3}=0
Solve x_{3}=56-28\left(2+\frac{7}{2}x_{3}\right) for x_{3}.
x_{2}=2+\frac{7}{2}\times 0
Substitute 0 for x_{3} in the equation x_{2}=2+\frac{7}{2}x_{3}.
x_{2}=2
Calculate x_{2} from x_{2}=2+\frac{7}{2}\times 0.
x_{1}=-\frac{13}{11}\times 2-\frac{4}{11}\times 0+\frac{37}{11}
Substitute 2 for x_{2} and 0 for x_{3} in the equation x_{1}=-\frac{13}{11}x_{2}-\frac{4}{11}x_{3}+\frac{37}{11}.
x_{1}=1
Calculate x_{1} from x_{1}=-\frac{13}{11}\times 2-\frac{4}{11}\times 0+\frac{37}{11}.
x_{1}=1 x_{2}=2 x_{3}=0
The system is now solved.