Solve for a, b
a=\frac{1627}{1690}\approx 0.962721893
b = \frac{211}{169} = 1\frac{42}{169} \approx 1.24852071
Share
Copied to clipboard
10a+18.4b=32.6,18.4a+43.32b=71.8
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
10a+18.4b=32.6
Choose one of the equations and solve it for a by isolating a on the left hand side of the equal sign.
10a=-18.4b+32.6
Subtract \frac{92b}{5} from both sides of the equation.
a=\frac{1}{10}\left(-18.4b+32.6\right)
Divide both sides by 10.
a=-\frac{46}{25}b+\frac{163}{50}
Multiply \frac{1}{10} times \frac{-92b+163}{5}.
18.4\left(-\frac{46}{25}b+\frac{163}{50}\right)+43.32b=71.8
Substitute -\frac{46b}{25}+\frac{163}{50} for a in the other equation, 18.4a+43.32b=71.8.
-\frac{4232}{125}b+\frac{7498}{125}+43.32b=71.8
Multiply 18.4 times -\frac{46b}{25}+\frac{163}{50}.
\frac{1183}{125}b+\frac{7498}{125}=71.8
Add -\frac{4232b}{125} to \frac{1083b}{25}.
\frac{1183}{125}b=\frac{1477}{125}
Subtract \frac{7498}{125} from both sides of the equation.
b=\frac{211}{169}
Divide both sides of the equation by \frac{1183}{125}, which is the same as multiplying both sides by the reciprocal of the fraction.
a=-\frac{46}{25}\times \frac{211}{169}+\frac{163}{50}
Substitute \frac{211}{169} for b in a=-\frac{46}{25}b+\frac{163}{50}. Because the resulting equation contains only one variable, you can solve for a directly.
a=-\frac{9706}{4225}+\frac{163}{50}
Multiply -\frac{46}{25} times \frac{211}{169} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
a=\frac{1627}{1690}
Add \frac{163}{50} to -\frac{9706}{4225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
a=\frac{1627}{1690},b=\frac{211}{169}
The system is now solved.
10a+18.4b=32.6,18.4a+43.32b=71.8
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}10&18.4\\18.4&43.32\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}32.6\\71.8\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}10&18.4\\18.4&43.32\end{matrix}\right))\left(\begin{matrix}10&18.4\\18.4&43.32\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}10&18.4\\18.4&43.32\end{matrix}\right))\left(\begin{matrix}32.6\\71.8\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}10&18.4\\18.4&43.32\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}10&18.4\\18.4&43.32\end{matrix}\right))\left(\begin{matrix}32.6\\71.8\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}10&18.4\\18.4&43.32\end{matrix}\right))\left(\begin{matrix}32.6\\71.8\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{43.32}{10\times 43.32-18.4\times 18.4}&-\frac{18.4}{10\times 43.32-18.4\times 18.4}\\-\frac{18.4}{10\times 43.32-18.4\times 18.4}&\frac{10}{10\times 43.32-18.4\times 18.4}\end{matrix}\right)\left(\begin{matrix}32.6\\71.8\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1083}{2366}&-\frac{230}{1183}\\-\frac{230}{1183}&\frac{125}{1183}\end{matrix}\right)\left(\begin{matrix}32.6\\71.8\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1083}{2366}\times 32.6-\frac{230}{1183}\times 71.8\\-\frac{230}{1183}\times 32.6+\frac{125}{1183}\times 71.8\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1627}{1690}\\\frac{211}{169}\end{matrix}\right)
Do the arithmetic.
a=\frac{1627}{1690},b=\frac{211}{169}
Extract the matrix elements a and b.
10a+18.4b=32.6,18.4a+43.32b=71.8
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
18.4\times 10a+18.4\times 18.4b=18.4\times 32.6,10\times 18.4a+10\times 43.32b=10\times 71.8
To make 10a and \frac{92a}{5} equal, multiply all terms on each side of the first equation by 18.4 and all terms on each side of the second by 10.
184a+338.56b=599.84,184a+433.2b=718
Simplify.
184a-184a+338.56b-433.2b=599.84-718
Subtract 184a+433.2b=718 from 184a+338.56b=599.84 by subtracting like terms on each side of the equal sign.
338.56b-433.2b=599.84-718
Add 184a to -184a. Terms 184a and -184a cancel out, leaving an equation with only one variable that can be solved.
-94.64b=599.84-718
Add \frac{8464b}{25} to -\frac{2166b}{5}.
-94.64b=-118.16
Add 599.84 to -718.
b=\frac{211}{169}
Divide both sides of the equation by -94.64, which is the same as multiplying both sides by the reciprocal of the fraction.
18.4a+43.32\times \frac{211}{169}=71.8
Substitute \frac{211}{169} for b in 18.4a+43.32b=71.8. Because the resulting equation contains only one variable, you can solve for a directly.
18.4a+\frac{228513}{4225}=71.8
Multiply 43.32 times \frac{211}{169} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
18.4a=\frac{74842}{4225}
Subtract \frac{228513}{4225} from both sides of the equation.
a=\frac{1627}{1690}
Divide both sides of the equation by 18.4, which is the same as multiplying both sides by the reciprocal of the fraction.
a=\frac{1627}{1690},b=\frac{211}{169}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}