Solve for B, A
B=-2.8
A=6.2
Share
Copied to clipboard
-2B=7-1.4
Consider the first equation. Subtract 1.4 from both sides.
-2B=5.6
Subtract 1.4 from 7 to get 5.6.
B=\frac{5.6}{-2}
Divide both sides by -2.
B=\frac{56}{-20}
Expand \frac{5.6}{-2} by multiplying both numerator and the denominator by 10.
B=-\frac{14}{5}
Reduce the fraction \frac{56}{-20} to lowest terms by extracting and canceling out 4.
3A+2\left(-\frac{14}{5}\right)=13
Consider the second equation. Insert the known values of variables into the equation.
3A-\frac{28}{5}=13
Multiply 2 and -\frac{14}{5} to get -\frac{28}{5}.
3A=13+\frac{28}{5}
Add \frac{28}{5} to both sides.
3A=\frac{93}{5}
Add 13 and \frac{28}{5} to get \frac{93}{5}.
A=\frac{\frac{93}{5}}{3}
Divide both sides by 3.
A=\frac{93}{5\times 3}
Express \frac{\frac{93}{5}}{3} as a single fraction.
A=\frac{93}{15}
Multiply 5 and 3 to get 15.
A=\frac{31}{5}
Reduce the fraction \frac{93}{15} to lowest terms by extracting and canceling out 3.
B=-\frac{14}{5} A=\frac{31}{5}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}