\left. \begin{array} { c } { 1 + \frac { 1 } { 1 - \frac { 1 } { 1 + \frac { 1 } { 1 - \frac { 1 } { 3 } } } } } \\ { \frac { 2 - \frac { 1 } { 3 } } { \frac { 3 } { 4 } + \frac { 1 } { 4 } } { \frac { 3 } { 4 } } \times \frac { 9 } { 40 } } \end{array} \right.
Sort
\frac{9}{32},\frac{8}{3}
Evaluate
\frac{8}{3},\ \frac{9}{32}
Share
Copied to clipboard
sort(1+\frac{1}{1-\frac{1}{1+\frac{1}{\frac{3}{3}-\frac{1}{3}}}},\frac{2-\frac{1}{3}}{\frac{3}{4}+\frac{1}{4}}\times \frac{3}{4}\times \frac{9}{40})
Convert 1 to fraction \frac{3}{3}.
sort(1+\frac{1}{1-\frac{1}{1+\frac{1}{\frac{3-1}{3}}}},\frac{2-\frac{1}{3}}{\frac{3}{4}+\frac{1}{4}}\times \frac{3}{4}\times \frac{9}{40})
Since \frac{3}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
sort(1+\frac{1}{1-\frac{1}{1+\frac{1}{\frac{2}{3}}}},\frac{2-\frac{1}{3}}{\frac{3}{4}+\frac{1}{4}}\times \frac{3}{4}\times \frac{9}{40})
Subtract 1 from 3 to get 2.
sort(1+\frac{1}{1-\frac{1}{1+1\times \frac{3}{2}}},\frac{2-\frac{1}{3}}{\frac{3}{4}+\frac{1}{4}}\times \frac{3}{4}\times \frac{9}{40})
Divide 1 by \frac{2}{3} by multiplying 1 by the reciprocal of \frac{2}{3}.
sort(1+\frac{1}{1-\frac{1}{1+\frac{3}{2}}},\frac{2-\frac{1}{3}}{\frac{3}{4}+\frac{1}{4}}\times \frac{3}{4}\times \frac{9}{40})
Multiply 1 and \frac{3}{2} to get \frac{3}{2}.
sort(1+\frac{1}{1-\frac{1}{\frac{2}{2}+\frac{3}{2}}},\frac{2-\frac{1}{3}}{\frac{3}{4}+\frac{1}{4}}\times \frac{3}{4}\times \frac{9}{40})
Convert 1 to fraction \frac{2}{2}.
sort(1+\frac{1}{1-\frac{1}{\frac{2+3}{2}}},\frac{2-\frac{1}{3}}{\frac{3}{4}+\frac{1}{4}}\times \frac{3}{4}\times \frac{9}{40})
Since \frac{2}{2} and \frac{3}{2} have the same denominator, add them by adding their numerators.
sort(1+\frac{1}{1-\frac{1}{\frac{5}{2}}},\frac{2-\frac{1}{3}}{\frac{3}{4}+\frac{1}{4}}\times \frac{3}{4}\times \frac{9}{40})
Add 2 and 3 to get 5.
sort(1+\frac{1}{1-1\times \frac{2}{5}},\frac{2-\frac{1}{3}}{\frac{3}{4}+\frac{1}{4}}\times \frac{3}{4}\times \frac{9}{40})
Divide 1 by \frac{5}{2} by multiplying 1 by the reciprocal of \frac{5}{2}.
sort(1+\frac{1}{1-\frac{2}{5}},\frac{2-\frac{1}{3}}{\frac{3}{4}+\frac{1}{4}}\times \frac{3}{4}\times \frac{9}{40})
Multiply 1 and \frac{2}{5} to get \frac{2}{5}.
sort(1+\frac{1}{\frac{5}{5}-\frac{2}{5}},\frac{2-\frac{1}{3}}{\frac{3}{4}+\frac{1}{4}}\times \frac{3}{4}\times \frac{9}{40})
Convert 1 to fraction \frac{5}{5}.
sort(1+\frac{1}{\frac{5-2}{5}},\frac{2-\frac{1}{3}}{\frac{3}{4}+\frac{1}{4}}\times \frac{3}{4}\times \frac{9}{40})
Since \frac{5}{5} and \frac{2}{5} have the same denominator, subtract them by subtracting their numerators.
sort(1+\frac{1}{\frac{3}{5}},\frac{2-\frac{1}{3}}{\frac{3}{4}+\frac{1}{4}}\times \frac{3}{4}\times \frac{9}{40})
Subtract 2 from 5 to get 3.
sort(1+1\times \frac{5}{3},\frac{2-\frac{1}{3}}{\frac{3}{4}+\frac{1}{4}}\times \frac{3}{4}\times \frac{9}{40})
Divide 1 by \frac{3}{5} by multiplying 1 by the reciprocal of \frac{3}{5}.
sort(1+\frac{5}{3},\frac{2-\frac{1}{3}}{\frac{3}{4}+\frac{1}{4}}\times \frac{3}{4}\times \frac{9}{40})
Multiply 1 and \frac{5}{3} to get \frac{5}{3}.
sort(\frac{3}{3}+\frac{5}{3},\frac{2-\frac{1}{3}}{\frac{3}{4}+\frac{1}{4}}\times \frac{3}{4}\times \frac{9}{40})
Convert 1 to fraction \frac{3}{3}.
sort(\frac{3+5}{3},\frac{2-\frac{1}{3}}{\frac{3}{4}+\frac{1}{4}}\times \frac{3}{4}\times \frac{9}{40})
Since \frac{3}{3} and \frac{5}{3} have the same denominator, add them by adding their numerators.
sort(\frac{8}{3},\frac{2-\frac{1}{3}}{\frac{3}{4}+\frac{1}{4}}\times \frac{3}{4}\times \frac{9}{40})
Add 3 and 5 to get 8.
sort(\frac{8}{3},\frac{\frac{6}{3}-\frac{1}{3}}{\frac{3}{4}+\frac{1}{4}}\times \frac{3}{4}\times \frac{9}{40})
Convert 2 to fraction \frac{6}{3}.
sort(\frac{8}{3},\frac{\frac{6-1}{3}}{\frac{3}{4}+\frac{1}{4}}\times \frac{3}{4}\times \frac{9}{40})
Since \frac{6}{3} and \frac{1}{3} have the same denominator, subtract them by subtracting their numerators.
sort(\frac{8}{3},\frac{\frac{5}{3}}{\frac{3}{4}+\frac{1}{4}}\times \frac{3}{4}\times \frac{9}{40})
Subtract 1 from 6 to get 5.
sort(\frac{8}{3},\frac{\frac{5}{3}}{\frac{3+1}{4}}\times \frac{3}{4}\times \frac{9}{40})
Since \frac{3}{4} and \frac{1}{4} have the same denominator, add them by adding their numerators.
sort(\frac{8}{3},\frac{\frac{5}{3}}{\frac{4}{4}}\times \frac{3}{4}\times \frac{9}{40})
Add 3 and 1 to get 4.
sort(\frac{8}{3},\frac{\frac{5}{3}}{1}\times \frac{3}{4}\times \frac{9}{40})
Divide 4 by 4 to get 1.
sort(\frac{8}{3},\frac{5}{3}\times \frac{3}{4}\times \frac{9}{40})
Anything divided by one gives itself.
sort(\frac{8}{3},\frac{5\times 3}{3\times 4}\times \frac{9}{40})
Multiply \frac{5}{3} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
sort(\frac{8}{3},\frac{5}{4}\times \frac{9}{40})
Cancel out 3 in both numerator and denominator.
sort(\frac{8}{3},\frac{5\times 9}{4\times 40})
Multiply \frac{5}{4} times \frac{9}{40} by multiplying numerator times numerator and denominator times denominator.
sort(\frac{8}{3},\frac{45}{160})
Do the multiplications in the fraction \frac{5\times 9}{4\times 40}.
sort(\frac{8}{3},\frac{9}{32})
Reduce the fraction \frac{45}{160} to lowest terms by extracting and canceling out 5.
\frac{256}{96},\frac{27}{96}
Least common denominator of the numbers in the list \frac{8}{3},\frac{9}{32} is 96. Convert numbers in the list to fractions with denominator 96.
\frac{256}{96}
To sort the list, start from a single element \frac{256}{96}.
\frac{27}{96},\frac{256}{96}
Insert \frac{27}{96} to the appropriate location in the new list.
\frac{9}{32},\frac{8}{3}
Replace the obtained fractions with the initial values.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}