Solve for x, y
x=55000
y=45000
Graph
Share
Copied to clipboard
0.1x+0.14y=11800,x+y=100000
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
0.1x+0.14y=11800
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
0.1x=-0.14y+11800
Subtract \frac{7y}{50} from both sides of the equation.
x=10\left(-0.14y+11800\right)
Multiply both sides by 10.
x=-1.4y+118000
Multiply 10 times -\frac{7y}{50}+11800.
-1.4y+118000+y=100000
Substitute -\frac{7y}{5}+118000 for x in the other equation, x+y=100000.
-0.4y+118000=100000
Add -\frac{7y}{5} to y.
-0.4y=-18000
Subtract 118000 from both sides of the equation.
y=45000
Divide both sides of the equation by -0.4, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-1.4\times 45000+118000
Substitute 45000 for y in x=-1.4y+118000. Because the resulting equation contains only one variable, you can solve for x directly.
x=-63000+118000
Multiply -1.4 times 45000.
x=55000
Add 118000 to -63000.
x=55000,y=45000
The system is now solved.
0.1x+0.14y=11800,x+y=100000
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}0.1&0.14\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}11800\\100000\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}0.1&0.14\\1&1\end{matrix}\right))\left(\begin{matrix}0.1&0.14\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.1&0.14\\1&1\end{matrix}\right))\left(\begin{matrix}11800\\100000\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}0.1&0.14\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.1&0.14\\1&1\end{matrix}\right))\left(\begin{matrix}11800\\100000\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.1&0.14\\1&1\end{matrix}\right))\left(\begin{matrix}11800\\100000\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{0.1-0.14}&-\frac{0.14}{0.1-0.14}\\-\frac{1}{0.1-0.14}&\frac{0.1}{0.1-0.14}\end{matrix}\right)\left(\begin{matrix}11800\\100000\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-25&3.5\\25&-2.5\end{matrix}\right)\left(\begin{matrix}11800\\100000\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-25\times 11800+3.5\times 100000\\25\times 11800-2.5\times 100000\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}55000\\45000\end{matrix}\right)
Do the arithmetic.
x=55000,y=45000
Extract the matrix elements x and y.
0.1x+0.14y=11800,x+y=100000
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
0.1x+0.14y=11800,0.1x+0.1y=0.1\times 100000
To make \frac{x}{10} and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by 0.1.
0.1x+0.14y=11800,0.1x+0.1y=10000
Simplify.
0.1x-0.1x+0.14y-0.1y=11800-10000
Subtract 0.1x+0.1y=10000 from 0.1x+0.14y=11800 by subtracting like terms on each side of the equal sign.
0.14y-0.1y=11800-10000
Add \frac{x}{10} to -\frac{x}{10}. Terms \frac{x}{10} and -\frac{x}{10} cancel out, leaving an equation with only one variable that can be solved.
0.04y=11800-10000
Add \frac{7y}{50} to -\frac{y}{10}.
0.04y=1800
Add 11800 to -10000.
y=45000
Multiply both sides by 25.
x+45000=100000
Substitute 45000 for y in x+y=100000. Because the resulting equation contains only one variable, you can solve for x directly.
x=55000
Subtract 45000 from both sides of the equation.
x=55000,y=45000
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}