Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

-4-5x_{1}-17-4\left(x-y\right)-5=0
Consider the first equation. Combine -2x_{1} and -3x_{1} to get -5x_{1}.
-21-5x_{1}-4\left(x-y\right)-5=0
Subtract 17 from -4 to get -21.
-21-5x_{1}-4x+4y-5=0
Use the distributive property to multiply -4 by x-y.
-26-5x_{1}-4x+4y=0
Subtract 5 from -21 to get -26.
-5x_{1}-4x+4y=26
Add 26 to both sides. Anything plus zero gives itself.
-4x+4y=26+5x_{1}
Add 5x_{1} to both sides.
5-4y+4x-y-5y=0
Consider the second equation. Use the distributive property to multiply -4 by y-x.
5-5y+4x-5y=0
Combine -4y and -y to get -5y.
5-10y+4x=0
Combine -5y and -5y to get -10y.
-10y+4x=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
-4x+4y=5x_{1}+26,4x-10y=-5
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-4x+4y=5x_{1}+26
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
-4x=-4y+5x_{1}+26
Subtract 4y from both sides of the equation.
x=-\frac{1}{4}\left(-4y+5x_{1}+26\right)
Divide both sides by -4.
x=y-\frac{5x_{1}}{4}-\frac{13}{2}
Multiply -\frac{1}{4} times -4y+26+5x_{1}.
4\left(y-\frac{5x_{1}}{4}-\frac{13}{2}\right)-10y=-5
Substitute y-\frac{13}{2}-\frac{5x_{1}}{4} for x in the other equation, 4x-10y=-5.
4y-5x_{1}-26-10y=-5
Multiply 4 times y-\frac{13}{2}-\frac{5x_{1}}{4}.
-6y-5x_{1}-26=-5
Add 4y to -10y.
-6y=5x_{1}+21
Subtract -26-5x_{1} from both sides of the equation.
y=-\frac{5x_{1}}{6}-\frac{7}{2}
Divide both sides by -6.
x=-\frac{5x_{1}}{6}-\frac{7}{2}-\frac{5x_{1}}{4}-\frac{13}{2}
Substitute -\frac{7}{2}-\frac{5x_{1}}{6} for y in x=y-\frac{5x_{1}}{4}-\frac{13}{2}. Because the resulting equation contains only one variable, you can solve for x directly.
x=-\frac{25x_{1}}{12}-10
Add -\frac{13}{2}-\frac{5x_{1}}{4} to -\frac{7}{2}-\frac{5x_{1}}{6}.
x=-\frac{25x_{1}}{12}-10,y=-\frac{5x_{1}}{6}-\frac{7}{2}
The system is now solved.
-4-5x_{1}-17-4\left(x-y\right)-5=0
Consider the first equation. Combine -2x_{1} and -3x_{1} to get -5x_{1}.
-21-5x_{1}-4\left(x-y\right)-5=0
Subtract 17 from -4 to get -21.
-21-5x_{1}-4x+4y-5=0
Use the distributive property to multiply -4 by x-y.
-26-5x_{1}-4x+4y=0
Subtract 5 from -21 to get -26.
-5x_{1}-4x+4y=26
Add 26 to both sides. Anything plus zero gives itself.
-4x+4y=26+5x_{1}
Add 5x_{1} to both sides.
5-4y+4x-y-5y=0
Consider the second equation. Use the distributive property to multiply -4 by y-x.
5-5y+4x-5y=0
Combine -4y and -y to get -5y.
5-10y+4x=0
Combine -5y and -5y to get -10y.
-10y+4x=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
-4x+4y=5x_{1}+26,4x-10y=-5
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}-4&4\\4&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5x_{1}+26\\-5\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}-4&4\\4&-10\end{matrix}\right))\left(\begin{matrix}-4&4\\4&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&4\\4&-10\end{matrix}\right))\left(\begin{matrix}5x_{1}+26\\-5\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}-4&4\\4&-10\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&4\\4&-10\end{matrix}\right))\left(\begin{matrix}5x_{1}+26\\-5\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-4&4\\4&-10\end{matrix}\right))\left(\begin{matrix}5x_{1}+26\\-5\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{10}{-4\left(-10\right)-4\times 4}&-\frac{4}{-4\left(-10\right)-4\times 4}\\-\frac{4}{-4\left(-10\right)-4\times 4}&-\frac{4}{-4\left(-10\right)-4\times 4}\end{matrix}\right)\left(\begin{matrix}5x_{1}+26\\-5\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{12}&-\frac{1}{6}\\-\frac{1}{6}&-\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}5x_{1}+26\\-5\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{12}\left(5x_{1}+26\right)-\frac{1}{6}\left(-5\right)\\-\frac{1}{6}\left(5x_{1}+26\right)-\frac{1}{6}\left(-5\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{25x_{1}}{12}-10\\-\frac{5x_{1}}{6}-\frac{7}{2}\end{matrix}\right)
Do the arithmetic.
x=-\frac{25x_{1}}{12}-10,y=-\frac{5x_{1}}{6}-\frac{7}{2}
Extract the matrix elements x and y.
-4-5x_{1}-17-4\left(x-y\right)-5=0
Consider the first equation. Combine -2x_{1} and -3x_{1} to get -5x_{1}.
-21-5x_{1}-4\left(x-y\right)-5=0
Subtract 17 from -4 to get -21.
-21-5x_{1}-4x+4y-5=0
Use the distributive property to multiply -4 by x-y.
-26-5x_{1}-4x+4y=0
Subtract 5 from -21 to get -26.
-5x_{1}-4x+4y=26
Add 26 to both sides. Anything plus zero gives itself.
-4x+4y=26+5x_{1}
Add 5x_{1} to both sides.
5-4y+4x-y-5y=0
Consider the second equation. Use the distributive property to multiply -4 by y-x.
5-5y+4x-5y=0
Combine -4y and -y to get -5y.
5-10y+4x=0
Combine -5y and -5y to get -10y.
-10y+4x=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
-4x+4y=5x_{1}+26,4x-10y=-5
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
4\left(-4\right)x+4\times 4y=4\left(5x_{1}+26\right),-4\times 4x-4\left(-10\right)y=-4\left(-5\right)
To make -4x and 4x equal, multiply all terms on each side of the first equation by 4 and all terms on each side of the second by -4.
-16x+16y=20x_{1}+104,-16x+40y=20
Simplify.
-16x+16x+16y-40y=20x_{1}+104-20
Subtract -16x+40y=20 from -16x+16y=20x_{1}+104 by subtracting like terms on each side of the equal sign.
16y-40y=20x_{1}+104-20
Add -16x to 16x. Terms -16x and 16x cancel out, leaving an equation with only one variable that can be solved.
-24y=20x_{1}+104-20
Add 16y to -40y.
-24y=20x_{1}+84
Add 104+20x_{1} to -20.
y=-\frac{5x_{1}}{6}-\frac{7}{2}
Divide both sides by -24.
4x-10\left(-\frac{5x_{1}}{6}-\frac{7}{2}\right)=-5
Substitute -\frac{7}{2}-\frac{5x_{1}}{6} for y in 4x-10y=-5. Because the resulting equation contains only one variable, you can solve for x directly.
4x+\frac{25x_{1}}{3}+35=-5
Multiply -10 times -\frac{7}{2}-\frac{5x_{1}}{6}.
4x=-\frac{25x_{1}}{3}-40
Subtract 35+\frac{25x_{1}}{3} from both sides of the equation.
x=-\frac{25x_{1}}{12}-10
Divide both sides by 4.
x=-\frac{25x_{1}}{12}-10,y=-\frac{5x_{1}}{6}-\frac{7}{2}
The system is now solved.