Skip to main content
Solve for I_1, I_2
Tick mark Image

Similar Problems from Web Search

Share

-250I_{1}+40.5I_{2}-20=0,-1950I_{1}-118.75I_{2}+27=0
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
-250I_{1}+40.5I_{2}-20=0
Choose one of the equations and solve it for I_{1} by isolating I_{1} on the left hand side of the equal sign.
-250I_{1}+40.5I_{2}=20
Add 20 to both sides of the equation.
-250I_{1}=-40.5I_{2}+20
Subtract \frac{81I_{2}}{2} from both sides of the equation.
I_{1}=-\frac{1}{250}\left(-40.5I_{2}+20\right)
Divide both sides by -250.
I_{1}=\frac{81}{500}I_{2}-\frac{2}{25}
Multiply -\frac{1}{250} times -\frac{81I_{2}}{2}+20.
-1950\left(\frac{81}{500}I_{2}-\frac{2}{25}\right)-118.75I_{2}+27=0
Substitute \frac{81I_{2}}{500}-\frac{2}{25} for I_{1} in the other equation, -1950I_{1}-118.75I_{2}+27=0.
-\frac{3159}{10}I_{2}+156-118.75I_{2}+27=0
Multiply -1950 times \frac{81I_{2}}{500}-\frac{2}{25}.
-\frac{8693}{20}I_{2}+156+27=0
Add -\frac{3159I_{2}}{10} to -\frac{475I_{2}}{4}.
-\frac{8693}{20}I_{2}+183=0
Add 156 to 27.
-\frac{8693}{20}I_{2}=-183
Subtract 183 from both sides of the equation.
I_{2}=\frac{3660}{8693}
Divide both sides of the equation by -\frac{8693}{20}, which is the same as multiplying both sides by the reciprocal of the fraction.
I_{1}=\frac{81}{500}\times \frac{3660}{8693}-\frac{2}{25}
Substitute \frac{3660}{8693} for I_{2} in I_{1}=\frac{81}{500}I_{2}-\frac{2}{25}. Because the resulting equation contains only one variable, you can solve for I_{1} directly.
I_{1}=\frac{14823}{217325}-\frac{2}{25}
Multiply \frac{81}{500} times \frac{3660}{8693} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
I_{1}=-\frac{2563}{217325}
Add -\frac{2}{25} to \frac{14823}{217325} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
I_{1}=-\frac{2563}{217325},I_{2}=\frac{3660}{8693}
The system is now solved.
-250I_{1}+40.5I_{2}-20=0,-1950I_{1}-118.75I_{2}+27=0
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}-250&40.5\\-1950&-118.75\end{matrix}\right)\left(\begin{matrix}I_{1}\\I_{2}\end{matrix}\right)=\left(\begin{matrix}20\\-27\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}-250&40.5\\-1950&-118.75\end{matrix}\right))\left(\begin{matrix}-250&40.5\\-1950&-118.75\end{matrix}\right)\left(\begin{matrix}I_{1}\\I_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}-250&40.5\\-1950&-118.75\end{matrix}\right))\left(\begin{matrix}20\\-27\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}-250&40.5\\-1950&-118.75\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}I_{1}\\I_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}-250&40.5\\-1950&-118.75\end{matrix}\right))\left(\begin{matrix}20\\-27\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}I_{1}\\I_{2}\end{matrix}\right)=inverse(\left(\begin{matrix}-250&40.5\\-1950&-118.75\end{matrix}\right))\left(\begin{matrix}20\\-27\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}I_{1}\\I_{2}\end{matrix}\right)=\left(\begin{matrix}-\frac{118.75}{-250\left(-118.75\right)-40.5\left(-1950\right)}&-\frac{40.5}{-250\left(-118.75\right)-40.5\left(-1950\right)}\\-\frac{-1950}{-250\left(-118.75\right)-40.5\left(-1950\right)}&-\frac{250}{-250\left(-118.75\right)-40.5\left(-1950\right)}\end{matrix}\right)\left(\begin{matrix}20\\-27\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}I_{1}\\I_{2}\end{matrix}\right)=\left(\begin{matrix}-\frac{19}{17386}&-\frac{81}{217325}\\\frac{156}{8693}&-\frac{20}{8693}\end{matrix}\right)\left(\begin{matrix}20\\-27\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}I_{1}\\I_{2}\end{matrix}\right)=\left(\begin{matrix}-\frac{19}{17386}\times 20-\frac{81}{217325}\left(-27\right)\\\frac{156}{8693}\times 20-\frac{20}{8693}\left(-27\right)\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}I_{1}\\I_{2}\end{matrix}\right)=\left(\begin{matrix}-\frac{2563}{217325}\\\frac{3660}{8693}\end{matrix}\right)
Do the arithmetic.
I_{1}=-\frac{2563}{217325},I_{2}=\frac{3660}{8693}
Extract the matrix elements I_{1} and I_{2}.
-250I_{1}+40.5I_{2}-20=0,-1950I_{1}-118.75I_{2}+27=0
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-1950\left(-250\right)I_{1}-1950\times 40.5I_{2}-1950\left(-20\right)=0,-250\left(-1950\right)I_{1}-250\left(-118.75\right)I_{2}-250\times 27=0
To make -250I_{1} and -1950I_{1} equal, multiply all terms on each side of the first equation by -1950 and all terms on each side of the second by -250.
487500I_{1}-78975I_{2}+39000=0,487500I_{1}+29687.5I_{2}-6750=0
Simplify.
487500I_{1}-487500I_{1}-78975I_{2}-29687.5I_{2}+39000+6750=0
Subtract 487500I_{1}+29687.5I_{2}-6750=0 from 487500I_{1}-78975I_{2}+39000=0 by subtracting like terms on each side of the equal sign.
-78975I_{2}-29687.5I_{2}+39000+6750=0
Add 487500I_{1} to -487500I_{1}. Terms 487500I_{1} and -487500I_{1} cancel out, leaving an equation with only one variable that can be solved.
-108662.5I_{2}+39000+6750=0
Add -78975I_{2} to -\frac{59375I_{2}}{2}.
-108662.5I_{2}+45750=0
Add 39000 to 6750.
-108662.5I_{2}=-45750
Subtract 45750 from both sides of the equation.
I_{2}=\frac{3660}{8693}
Divide both sides of the equation by -108662.5, which is the same as multiplying both sides by the reciprocal of the fraction.
-1950I_{1}-118.75\times \frac{3660}{8693}+27=0
Substitute \frac{3660}{8693} for I_{2} in -1950I_{1}-118.75I_{2}+27=0. Because the resulting equation contains only one variable, you can solve for I_{1} directly.
-1950I_{1}-\frac{434625}{8693}+27=0
Multiply -118.75 times \frac{3660}{8693} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
-1950I_{1}-\frac{199914}{8693}=0
Add -\frac{434625}{8693} to 27.
-1950I_{1}=\frac{199914}{8693}
Add \frac{199914}{8693} to both sides of the equation.
I_{1}=-\frac{2563}{217325}
Divide both sides by -1950.
I_{1}=-\frac{2563}{217325},I_{2}=\frac{3660}{8693}
The system is now solved.