Solve for x_1, x_2, x_3
x_{1}=\frac{x_{4}-1}{2}
x_{2}=\frac{-x_{4}-5}{2}
x_{3}=-2x_{4}-9
Share
Copied to clipboard
x_{1}+x_{2}=-3 4x_{2}-x_{3}=-1 -2x_{1}+x_{4}=1
Reorder the equations.
x_{1}=-x_{2}-3
Solve x_{1}+x_{2}=-3 for x_{1}.
-2\left(-x_{2}-3\right)+x_{4}=1
Substitute -x_{2}-3 for x_{1} in the equation -2x_{1}+x_{4}=1.
x_{3}=4x_{2}+1 x_{2}=-\frac{5}{2}-\frac{1}{2}x_{4}
Solve the second equation for x_{3} and the third equation for x_{2}.
x_{3}=4\left(-\frac{5}{2}-\frac{1}{2}x_{4}\right)+1
Substitute -\frac{5}{2}-\frac{1}{2}x_{4} for x_{2} in the equation x_{3}=4x_{2}+1.
x_{3}=-9-2x_{4}
Calculate x_{3} from x_{3}=4\left(-\frac{5}{2}-\frac{1}{2}x_{4}\right)+1.
x_{1}=-\left(-\frac{5}{2}-\frac{1}{2}x_{4}\right)-3
Substitute -\frac{5}{2}-\frac{1}{2}x_{4} for x_{2} in the equation x_{1}=-x_{2}-3.
x_{1}=-\frac{1}{2}+\frac{1}{2}x_{4}
Calculate x_{1} from x_{1}=-\left(-\frac{5}{2}-\frac{1}{2}x_{4}\right)-3.
x_{1}=-\frac{1}{2}+\frac{1}{2}x_{4} x_{2}=-\frac{5}{2}-\frac{1}{2}x_{4} x_{3}=-9-2x_{4}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}