Skip to main content
Solve for x, R, y, z
Tick mark Image

Similar Problems from Web Search

Share

-12+\frac{3}{5}x+\frac{14}{15}\times 3+6=0
Consider the second equation. Insert the known values of variables into the equation.
-12+\frac{3}{5}x+\frac{14}{5}+6=0
Multiply \frac{14}{15} and 3 to get \frac{14}{5}.
-\frac{46}{5}+\frac{3}{5}x+6=0
Add -12 and \frac{14}{5} to get -\frac{46}{5}.
-\frac{16}{5}+\frac{3}{5}x=0
Add -\frac{46}{5} and 6 to get -\frac{16}{5}.
\frac{3}{5}x=\frac{16}{5}
Add \frac{16}{5} to both sides. Anything plus zero gives itself.
x=\frac{16}{5}\times \frac{5}{3}
Multiply both sides by \frac{5}{3}, the reciprocal of \frac{3}{5}.
x=\frac{16}{3}
Multiply \frac{16}{5} and \frac{5}{3} to get \frac{16}{3}.
\frac{16}{3}=y+3
Consider the third equation. Insert the known values of variables into the equation.
y+3=\frac{16}{3}
Swap sides so that all variable terms are on the left hand side.
y=\frac{16}{3}-3
Subtract 3 from both sides.
y=\frac{7}{3}
Subtract 3 from \frac{16}{3} to get \frac{7}{3}.
-12+\frac{3}{5}\times \frac{16}{3}+\left(\frac{7}{15}+R\right)\times \frac{7}{3}=0
Consider the first equation. Insert the known values of variables into the equation.
-12+\frac{16}{5}+\left(\frac{7}{15}+R\right)\times \frac{7}{3}=0
Multiply \frac{3}{5} and \frac{16}{3} to get \frac{16}{5}.
-\frac{44}{5}+\left(\frac{7}{15}+R\right)\times \frac{7}{3}=0
Add -12 and \frac{16}{5} to get -\frac{44}{5}.
-\frac{44}{5}+\frac{49}{45}+\frac{7}{3}R=0
Use the distributive property to multiply \frac{7}{15}+R by \frac{7}{3}.
-\frac{347}{45}+\frac{7}{3}R=0
Add -\frac{44}{5} and \frac{49}{45} to get -\frac{347}{45}.
\frac{7}{3}R=\frac{347}{45}
Add \frac{347}{45} to both sides. Anything plus zero gives itself.
R=\frac{347}{45}\times \frac{3}{7}
Multiply both sides by \frac{3}{7}, the reciprocal of \frac{7}{3}.
R=\frac{347}{105}
Multiply \frac{347}{45} and \frac{3}{7} to get \frac{347}{105}.
x=\frac{16}{3} R=\frac{347}{105} y=\frac{7}{3} z=3
The system is now solved.