Solve for U_1, U_2, I_x
U_{1} = -\frac{20}{9} = -2\frac{2}{9} \approx -2.222222222
U_{2} = -\frac{80}{9} = -8\frac{8}{9} \approx -8.888888889
I_{x}=-\frac{2}{9}\approx -0.222222222
Share
Copied to clipboard
6U_{1}-5U_{2}+50I_{x}=20 -U_{2}+2U_{1}+20I_{x}=0 10I_{x}=U_{1}
Multiply each equation by the least common multiple of denominators in it. Simplify.
10I_{x}=U_{1} -U_{2}+2U_{1}+20I_{x}=0 6U_{1}-5U_{2}+50I_{x}=20
Reorder the equations.
U_{1}=10I_{x}
Solve 10I_{x}=U_{1} for U_{1}.
-U_{2}+2\times 10I_{x}+20I_{x}=0 6\times 10I_{x}-5U_{2}+50I_{x}=20
Substitute 10I_{x} for U_{1} in the second and third equation.
U_{2}=40I_{x} I_{x}=\frac{2}{11}+\frac{1}{22}U_{2}
Solve these equations for U_{2} and I_{x} respectively.
I_{x}=\frac{2}{11}+\frac{1}{22}\times 40I_{x}
Substitute 40I_{x} for U_{2} in the equation I_{x}=\frac{2}{11}+\frac{1}{22}U_{2}.
I_{x}=-\frac{2}{9}
Solve I_{x}=\frac{2}{11}+\frac{1}{22}\times 40I_{x} for I_{x}.
U_{2}=40\left(-\frac{2}{9}\right)
Substitute -\frac{2}{9} for I_{x} in the equation U_{2}=40I_{x}.
U_{2}=-\frac{80}{9}
Calculate U_{2} from U_{2}=40\left(-\frac{2}{9}\right).
U_{1}=10\left(-\frac{2}{9}\right)
Substitute -\frac{2}{9} for I_{x} in the equation U_{1}=10I_{x}.
U_{1}=-\frac{20}{9}
Calculate U_{1} from U_{1}=10\left(-\frac{2}{9}\right).
U_{1}=-\frac{20}{9} U_{2}=-\frac{80}{9} I_{x}=-\frac{2}{9}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}