Skip to main content
Solve for U_1, U_2, I_x
Tick mark Image

Similar Problems from Web Search

Share

6U_{1}-5U_{2}+50I_{x}=20 -U_{2}+2U_{1}+20I_{x}=0 10I_{x}=U_{1}
Multiply each equation by the least common multiple of denominators in it. Simplify.
10I_{x}=U_{1} -U_{2}+2U_{1}+20I_{x}=0 6U_{1}-5U_{2}+50I_{x}=20
Reorder the equations.
U_{1}=10I_{x}
Solve 10I_{x}=U_{1} for U_{1}.
-U_{2}+2\times 10I_{x}+20I_{x}=0 6\times 10I_{x}-5U_{2}+50I_{x}=20
Substitute 10I_{x} for U_{1} in the second and third equation.
U_{2}=40I_{x} I_{x}=\frac{2}{11}+\frac{1}{22}U_{2}
Solve these equations for U_{2} and I_{x} respectively.
I_{x}=\frac{2}{11}+\frac{1}{22}\times 40I_{x}
Substitute 40I_{x} for U_{2} in the equation I_{x}=\frac{2}{11}+\frac{1}{22}U_{2}.
I_{x}=-\frac{2}{9}
Solve I_{x}=\frac{2}{11}+\frac{1}{22}\times 40I_{x} for I_{x}.
U_{2}=40\left(-\frac{2}{9}\right)
Substitute -\frac{2}{9} for I_{x} in the equation U_{2}=40I_{x}.
U_{2}=-\frac{80}{9}
Calculate U_{2} from U_{2}=40\left(-\frac{2}{9}\right).
U_{1}=10\left(-\frac{2}{9}\right)
Substitute -\frac{2}{9} for I_{x} in the equation U_{1}=10I_{x}.
U_{1}=-\frac{20}{9}
Calculate U_{1} from U_{1}=10\left(-\frac{2}{9}\right).
U_{1}=-\frac{20}{9} U_{2}=-\frac{80}{9} I_{x}=-\frac{2}{9}
The system is now solved.