Skip to main content
Solve for U_1, U_2, I_x
Tick mark Image

Similar Problems from Web Search

Share

I_{x}=\frac{1}{3} \frac{1}{4}U_{2}+\left(U_{2}-U_{1}\right)\times \frac{1}{2}+5I_{x}=0 \left(U_{1}-U_{2}\right)\times \frac{1}{2}+\frac{1}{10}U_{1}+5I_{x}=2
Reorder the equations.
\frac{1}{4}U_{2}+\left(U_{2}-U_{1}\right)\times \frac{1}{2}+5\times \frac{1}{3}=0 \left(U_{1}-U_{2}\right)\times \frac{1}{2}+\frac{1}{10}U_{1}+5\times \frac{1}{3}=2
Substitute \frac{1}{3} for I_{x} in the second and third equation.
U_{2}=-\frac{20}{9}+\frac{2}{3}U_{1} U_{1}=\frac{5}{9}+\frac{5}{6}U_{2}
Solve these equations for U_{2} and U_{1} respectively.
U_{1}=\frac{5}{9}+\frac{5}{6}\left(-\frac{20}{9}+\frac{2}{3}U_{1}\right)
Substitute -\frac{20}{9}+\frac{2}{3}U_{1} for U_{2} in the equation U_{1}=\frac{5}{9}+\frac{5}{6}U_{2}.
U_{1}=-\frac{35}{12}
Solve U_{1}=\frac{5}{9}+\frac{5}{6}\left(-\frac{20}{9}+\frac{2}{3}U_{1}\right) for U_{1}.
U_{2}=-\frac{20}{9}+\frac{2}{3}\left(-\frac{35}{12}\right)
Substitute -\frac{35}{12} for U_{1} in the equation U_{2}=-\frac{20}{9}+\frac{2}{3}U_{1}.
U_{2}=-\frac{25}{6}
Calculate U_{2} from U_{2}=-\frac{20}{9}+\frac{2}{3}\left(-\frac{35}{12}\right).
U_{1}=-\frac{35}{12} U_{2}=-\frac{25}{6} I_{x}=\frac{1}{3}
The system is now solved.