Solve for U_1, U_2, I_x
U_{1} = -\frac{35}{12} = -2\frac{11}{12} \approx -2.916666667
U_{2} = -\frac{25}{6} = -4\frac{1}{6} \approx -4.166666667
I_{x}=\frac{1}{3}\approx 0.333333333
Share
Copied to clipboard
I_{x}=\frac{1}{3} \frac{1}{4}U_{2}+\left(U_{2}-U_{1}\right)\times \frac{1}{2}+5I_{x}=0 \left(U_{1}-U_{2}\right)\times \frac{1}{2}+\frac{1}{10}U_{1}+5I_{x}=2
Reorder the equations.
\frac{1}{4}U_{2}+\left(U_{2}-U_{1}\right)\times \frac{1}{2}+5\times \frac{1}{3}=0 \left(U_{1}-U_{2}\right)\times \frac{1}{2}+\frac{1}{10}U_{1}+5\times \frac{1}{3}=2
Substitute \frac{1}{3} for I_{x} in the second and third equation.
U_{2}=-\frac{20}{9}+\frac{2}{3}U_{1} U_{1}=\frac{5}{9}+\frac{5}{6}U_{2}
Solve these equations for U_{2} and U_{1} respectively.
U_{1}=\frac{5}{9}+\frac{5}{6}\left(-\frac{20}{9}+\frac{2}{3}U_{1}\right)
Substitute -\frac{20}{9}+\frac{2}{3}U_{1} for U_{2} in the equation U_{1}=\frac{5}{9}+\frac{5}{6}U_{2}.
U_{1}=-\frac{35}{12}
Solve U_{1}=\frac{5}{9}+\frac{5}{6}\left(-\frac{20}{9}+\frac{2}{3}U_{1}\right) for U_{1}.
U_{2}=-\frac{20}{9}+\frac{2}{3}\left(-\frac{35}{12}\right)
Substitute -\frac{35}{12} for U_{1} in the equation U_{2}=-\frac{20}{9}+\frac{2}{3}U_{1}.
U_{2}=-\frac{25}{6}
Calculate U_{2} from U_{2}=-\frac{20}{9}+\frac{2}{3}\left(-\frac{35}{12}\right).
U_{1}=-\frac{35}{12} U_{2}=-\frac{25}{6} I_{x}=\frac{1}{3}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}