Evaluate
28\sqrt{5}-38\approx 24.60990337
Share
Copied to clipboard
\frac{2\left(2\sqrt{5}-\sqrt{45}\right)}{\sqrt{5}}\times 3\left(\sqrt{5}-2\right)^{2}+\left(\sqrt{5}+3\right)^{2}-2\left(\sqrt{5}-2\right)\left(\sqrt{5}+3\right)
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{2\left(2\sqrt{5}-3\sqrt{5}\right)}{\sqrt{5}}\times 3\left(\sqrt{5}-2\right)^{2}+\left(\sqrt{5}+3\right)^{2}-2\left(\sqrt{5}-2\right)\left(\sqrt{5}+3\right)
Factor 45=3^{2}\times 5. Rewrite the square root of the product \sqrt{3^{2}\times 5} as the product of square roots \sqrt{3^{2}}\sqrt{5}. Take the square root of 3^{2}.
\frac{2\left(-1\right)\sqrt{5}}{\sqrt{5}}\times 3\left(\sqrt{5}-2\right)^{2}+\left(\sqrt{5}+3\right)^{2}-2\left(\sqrt{5}-2\right)\left(\sqrt{5}+3\right)
Combine 2\sqrt{5} and -3\sqrt{5} to get -\sqrt{5}.
\frac{-2\sqrt{5}}{\sqrt{5}}\times 3\left(\sqrt{5}-2\right)^{2}+\left(\sqrt{5}+3\right)^{2}-2\left(\sqrt{5}-2\right)\left(\sqrt{5}+3\right)
Multiply 2 and -1 to get -2.
\frac{-2\sqrt{5}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\times 3\left(\sqrt{5}-2\right)^{2}+\left(\sqrt{5}+3\right)^{2}-2\left(\sqrt{5}-2\right)\left(\sqrt{5}+3\right)
Rationalize the denominator of \frac{-2\sqrt{5}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{-2\sqrt{5}\sqrt{5}}{5}\times 3\left(\sqrt{5}-2\right)^{2}+\left(\sqrt{5}+3\right)^{2}-2\left(\sqrt{5}-2\right)\left(\sqrt{5}+3\right)
The square of \sqrt{5} is 5.
\frac{-2\times 5}{5}\times 3\left(\sqrt{5}-2\right)^{2}+\left(\sqrt{5}+3\right)^{2}-2\left(\sqrt{5}-2\right)\left(\sqrt{5}+3\right)
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{-10}{5}\times 3\left(\sqrt{5}-2\right)^{2}+\left(\sqrt{5}+3\right)^{2}-2\left(\sqrt{5}-2\right)\left(\sqrt{5}+3\right)
Multiply -2 and 5 to get -10.
-2\times 3\left(\sqrt{5}-2\right)^{2}+\left(\sqrt{5}+3\right)^{2}-2\left(\sqrt{5}-2\right)\left(\sqrt{5}+3\right)
Divide -10 by 5 to get -2.
-6\left(\sqrt{5}-2\right)^{2}+\left(\sqrt{5}+3\right)^{2}-2\left(\sqrt{5}-2\right)\left(\sqrt{5}+3\right)
Multiply -2 and 3 to get -6.
-6\left(\left(\sqrt{5}\right)^{2}-4\sqrt{5}+4\right)+\left(\sqrt{5}+3\right)^{2}-2\left(\sqrt{5}-2\right)\left(\sqrt{5}+3\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\sqrt{5}-2\right)^{2}.
-6\left(5-4\sqrt{5}+4\right)+\left(\sqrt{5}+3\right)^{2}-2\left(\sqrt{5}-2\right)\left(\sqrt{5}+3\right)
The square of \sqrt{5} is 5.
-6\left(9-4\sqrt{5}\right)+\left(\sqrt{5}+3\right)^{2}-2\left(\sqrt{5}-2\right)\left(\sqrt{5}+3\right)
Add 5 and 4 to get 9.
-54+24\sqrt{5}+\left(\sqrt{5}+3\right)^{2}-2\left(\sqrt{5}-2\right)\left(\sqrt{5}+3\right)
Use the distributive property to multiply -6 by 9-4\sqrt{5}.
-54+24\sqrt{5}+\left(\sqrt{5}\right)^{2}+6\sqrt{5}+9-2\left(\sqrt{5}-2\right)\left(\sqrt{5}+3\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{5}+3\right)^{2}.
-54+24\sqrt{5}+5+6\sqrt{5}+9-2\left(\sqrt{5}-2\right)\left(\sqrt{5}+3\right)
The square of \sqrt{5} is 5.
-54+24\sqrt{5}+14+6\sqrt{5}-2\left(\sqrt{5}-2\right)\left(\sqrt{5}+3\right)
Add 5 and 9 to get 14.
-40+24\sqrt{5}+6\sqrt{5}-2\left(\sqrt{5}-2\right)\left(\sqrt{5}+3\right)
Add -54 and 14 to get -40.
-40+30\sqrt{5}-2\left(\sqrt{5}-2\right)\left(\sqrt{5}+3\right)
Combine 24\sqrt{5} and 6\sqrt{5} to get 30\sqrt{5}.
-40+30\sqrt{5}+\left(-2\sqrt{5}+4\right)\left(\sqrt{5}+3\right)
Use the distributive property to multiply -2 by \sqrt{5}-2.
-40+30\sqrt{5}-2\left(\sqrt{5}\right)^{2}-2\sqrt{5}+12
Use the distributive property to multiply -2\sqrt{5}+4 by \sqrt{5}+3 and combine like terms.
-40+30\sqrt{5}-2\times 5-2\sqrt{5}+12
The square of \sqrt{5} is 5.
-40+30\sqrt{5}-10-2\sqrt{5}+12
Multiply -2 and 5 to get -10.
-40+30\sqrt{5}+2-2\sqrt{5}
Add -10 and 12 to get 2.
-38+30\sqrt{5}-2\sqrt{5}
Add -40 and 2 to get -38.
-38+28\sqrt{5}
Combine 30\sqrt{5} and -2\sqrt{5} to get 28\sqrt{5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}