Solve for x, y
x = \frac{91}{11} = 8\frac{3}{11} \approx 8.272727273
y=0
Graph
Share
Copied to clipboard
10x+2y+x=91
Consider the first equation. Combine y and y to get 2y.
11x+2y=91
Combine 10x and x to get 11x.
91-x+y-10x=y
Consider the second equation. Subtract 10x from both sides.
91-11x+y=y
Combine -x and -10x to get -11x.
91-11x+y-y=0
Subtract y from both sides.
91-11x=0
Combine y and -y to get 0.
-11x=-91
Subtract 91 from both sides. Anything subtracted from zero gives its negation.
x=\frac{-91}{-11}
Divide both sides by -11.
x=\frac{91}{11}
Fraction \frac{-91}{-11} can be simplified to \frac{91}{11} by removing the negative sign from both the numerator and the denominator.
11\times \frac{91}{11}+2y=91
Consider the first equation. Insert the known values of variables into the equation.
91+2y=91
Multiply 11 and \frac{91}{11} to get 91.
2y=91-91
Subtract 91 from both sides.
2y=0
Subtract 91 from 91 to get 0.
y=0
Divide both sides by 2. Zero divided by any non-zero number gives zero.
x=\frac{91}{11} y=0
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}