Solve for x, y
x=\sqrt{2}+1\approx 2.414213562
y=\frac{\sqrt{2}}{2}\approx 0.707106781
Graph
Share
Copied to clipboard
\frac{1-\frac{2}{\sqrt{2}+1+1}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Consider the first equation. Insert the known values of variables into the equation.
\frac{1-\frac{2}{\sqrt{2}+2}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Add 1 and 1 to get 2.
\frac{1-\frac{2\left(\sqrt{2}-2\right)}{\left(\sqrt{2}+2\right)\left(\sqrt{2}-2\right)}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Rationalize the denominator of \frac{2}{\sqrt{2}+2} by multiplying numerator and denominator by \sqrt{2}-2.
\frac{1-\frac{2\left(\sqrt{2}-2\right)}{\left(\sqrt{2}\right)^{2}-2^{2}}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Consider \left(\sqrt{2}+2\right)\left(\sqrt{2}-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1-\frac{2\left(\sqrt{2}-2\right)}{2-4}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Square \sqrt{2}. Square 2.
\frac{1-\frac{2\left(\sqrt{2}-2\right)}{-2}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Subtract 4 from 2 to get -2.
\frac{1-\left(-\left(\sqrt{2}-2\right)\right)}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Cancel out -2 and -2.
\frac{1+\sqrt{2}-2}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
The opposite of -\left(\sqrt{2}-2\right) is \sqrt{2}-2.
\frac{-1+\sqrt{2}}{\frac{\left(\sqrt{2}+1\right)^{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Subtract 2 from 1 to get -1.
\frac{-1+\sqrt{2}}{\frac{\left(\sqrt{2}\right)^{2}+2\sqrt{2}+1-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(\sqrt{2}+1\right)^{2}.
\frac{-1+\sqrt{2}}{\frac{2+2\sqrt{2}+1-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
The square of \sqrt{2} is 2.
\frac{-1+\sqrt{2}}{\frac{3+2\sqrt{2}-2\left(\sqrt{2}+1\right)+1}{\sqrt{2}+1+1}}=y
Add 2 and 1 to get 3.
\frac{-1+\sqrt{2}}{\frac{4+2\sqrt{2}-2\left(\sqrt{2}+1\right)}{\sqrt{2}+1+1}}=y
Add 3 and 1 to get 4.
\frac{-1+\sqrt{2}}{\frac{4+2\sqrt{2}-2\left(\sqrt{2}+1\right)}{\sqrt{2}+2}}=y
Add 1 and 1 to get 2.
\frac{-1+\sqrt{2}}{\frac{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}{\left(\sqrt{2}+2\right)\left(\sqrt{2}-2\right)}}=y
Rationalize the denominator of \frac{4+2\sqrt{2}-2\left(\sqrt{2}+1\right)}{\sqrt{2}+2} by multiplying numerator and denominator by \sqrt{2}-2.
\frac{-1+\sqrt{2}}{\frac{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}{\left(\sqrt{2}\right)^{2}-2^{2}}}=y
Consider \left(\sqrt{2}+2\right)\left(\sqrt{2}-2\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{-1+\sqrt{2}}{\frac{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}{2-4}}=y
Square \sqrt{2}. Square 2.
\frac{-1+\sqrt{2}}{\frac{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}{-2}}=y
Subtract 4 from 2 to get -2.
\frac{\left(-1+\sqrt{2}\right)\left(-2\right)}{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}=y
Divide -1+\sqrt{2} by \frac{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}{-2} by multiplying -1+\sqrt{2} by the reciprocal of \frac{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}{-2}.
\frac{2-2\sqrt{2}}{\left(4+2\sqrt{2}-2\left(\sqrt{2}+1\right)\right)\left(\sqrt{2}-2\right)}=y
Use the distributive property to multiply -1+\sqrt{2} by -2.
\frac{2-2\sqrt{2}}{\left(4+2\sqrt{2}-2\sqrt{2}-2\right)\left(\sqrt{2}-2\right)}=y
Use the distributive property to multiply -2 by \sqrt{2}+1.
\frac{2-2\sqrt{2}}{\left(4-2\right)\left(\sqrt{2}-2\right)}=y
Combine 2\sqrt{2} and -2\sqrt{2} to get 0.
\frac{2-2\sqrt{2}}{2\left(\sqrt{2}-2\right)}=y
Subtract 2 from 4 to get 2.
\frac{2-2\sqrt{2}}{2\sqrt{2}-4}=y
Use the distributive property to multiply 2 by \sqrt{2}-2.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{\left(2\sqrt{2}-4\right)\left(2\sqrt{2}+4\right)}=y
Rationalize the denominator of \frac{2-2\sqrt{2}}{2\sqrt{2}-4} by multiplying numerator and denominator by 2\sqrt{2}+4.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{\left(2\sqrt{2}\right)^{2}-4^{2}}=y
Consider \left(2\sqrt{2}-4\right)\left(2\sqrt{2}+4\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{2^{2}\left(\sqrt{2}\right)^{2}-4^{2}}=y
Expand \left(2\sqrt{2}\right)^{2}.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{4\left(\sqrt{2}\right)^{2}-4^{2}}=y
Calculate 2 to the power of 2 and get 4.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{4\times 2-4^{2}}=y
The square of \sqrt{2} is 2.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{8-4^{2}}=y
Multiply 4 and 2 to get 8.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{8-16}=y
Calculate 4 to the power of 2 and get 16.
\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{-8}=y
Subtract 16 from 8 to get -8.
y=\frac{\left(2-2\sqrt{2}\right)\left(2\sqrt{2}+4\right)}{-8}
Swap sides so that all variable terms are on the left hand side.
y=\frac{-4\sqrt{2}+8-4\left(\sqrt{2}\right)^{2}}{-8}
Use the distributive property to multiply 2-2\sqrt{2} by 2\sqrt{2}+4 and combine like terms.
y=\frac{-4\sqrt{2}+8-4\times 2}{-8}
The square of \sqrt{2} is 2.
y=\frac{-4\sqrt{2}+8-8}{-8}
Multiply -4 and 2 to get -8.
y=\frac{-4\sqrt{2}}{-8}
Subtract 8 from 8 to get 0.
y=\frac{1}{2}\sqrt{2}
Divide -4\sqrt{2} by -8 to get \frac{1}{2}\sqrt{2}.
x=\sqrt{2}+1 y=\frac{1}{2}\sqrt{2}
The system is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}