Solve for n
n=2
Share
Copied to clipboard
\frac{729}{4096}\times \left(\frac{16}{9}\right)^{5}=\left(\frac{4}{3}\right)^{n+2}
Calculate \frac{3}{4} to the power of 6 and get \frac{729}{4096}.
\frac{729}{4096}\times \frac{1048576}{59049}=\left(\frac{4}{3}\right)^{n+2}
Calculate \frac{16}{9} to the power of 5 and get \frac{1048576}{59049}.
\frac{256}{81}=\left(\frac{4}{3}\right)^{n+2}
Multiply \frac{729}{4096} and \frac{1048576}{59049} to get \frac{256}{81}.
\left(\frac{4}{3}\right)^{n+2}=\frac{256}{81}
Swap sides so that all variable terms are on the left hand side.
\log(\left(\frac{4}{3}\right)^{n+2})=\log(\frac{256}{81})
Take the logarithm of both sides of the equation.
\left(n+2\right)\log(\frac{4}{3})=\log(\frac{256}{81})
The logarithm of a number raised to a power is the power times the logarithm of the number.
n+2=\frac{\log(\frac{256}{81})}{\log(\frac{4}{3})}
Divide both sides by \log(\frac{4}{3}).
n+2=\log_{\frac{4}{3}}\left(\frac{256}{81}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
n=4-2
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}