Solve for x, y
x=5
y=-2
Graph
Share
Copied to clipboard
\frac{1}{4}\left(x+3\right)+\frac{1}{3}\left(y-1\right)=1,2x-y=12
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\frac{1}{4}\left(x+3\right)+\frac{1}{3}\left(y-1\right)=1
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
\frac{1}{4}x+\frac{3}{4}+\frac{1}{3}\left(y-1\right)=1
Multiply \frac{1}{4} times x+3.
\frac{1}{4}x+\frac{3}{4}+\frac{1}{3}y-\frac{1}{3}=1
Multiply \frac{1}{3} times y-1.
\frac{1}{4}x+\frac{1}{3}y+\frac{5}{12}=1
Add \frac{3}{4} to -\frac{1}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\frac{1}{4}x+\frac{1}{3}y=\frac{7}{12}
Subtract \frac{5}{12} from both sides of the equation.
\frac{1}{4}x=-\frac{1}{3}y+\frac{7}{12}
Subtract \frac{y}{3} from both sides of the equation.
x=4\left(-\frac{1}{3}y+\frac{7}{12}\right)
Multiply both sides by 4.
x=-\frac{4}{3}y+\frac{7}{3}
Multiply 4 times -\frac{y}{3}+\frac{7}{12}.
2\left(-\frac{4}{3}y+\frac{7}{3}\right)-y=12
Substitute \frac{-4y+7}{3} for x in the other equation, 2x-y=12.
-\frac{8}{3}y+\frac{14}{3}-y=12
Multiply 2 times \frac{-4y+7}{3}.
-\frac{11}{3}y+\frac{14}{3}=12
Add -\frac{8y}{3} to -y.
-\frac{11}{3}y=\frac{22}{3}
Subtract \frac{14}{3} from both sides of the equation.
y=-2
Divide both sides of the equation by -\frac{11}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{4}{3}\left(-2\right)+\frac{7}{3}
Substitute -2 for y in x=-\frac{4}{3}y+\frac{7}{3}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{8+7}{3}
Multiply -\frac{4}{3} times -2.
x=5
Add \frac{7}{3} to \frac{8}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=5,y=-2
The system is now solved.
\frac{1}{4}\left(x+3\right)+\frac{1}{3}\left(y-1\right)=1,2x-y=12
Put the equations in standard form and then use matrices to solve the system of equations.
\frac{1}{4}\left(x+3\right)+\frac{1}{3}\left(y-1\right)=1
Simplify the first equation to put it in standard form.
\frac{1}{4}x+\frac{3}{4}+\frac{1}{3}\left(y-1\right)=1
Multiply \frac{1}{4} times x+3.
\frac{1}{4}x+\frac{3}{4}+\frac{1}{3}y-\frac{1}{3}=1
Multiply \frac{1}{3} times y-1.
\frac{1}{4}x+\frac{1}{3}y+\frac{5}{12}=1
Add \frac{3}{4} to -\frac{1}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\frac{1}{4}x+\frac{1}{3}y=\frac{7}{12}
Subtract \frac{5}{12} from both sides of the equation.
\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{12}\\12\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\2&-1\end{matrix}\right))\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\2&-1\end{matrix}\right))\left(\begin{matrix}\frac{7}{12}\\12\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\2&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\2&-1\end{matrix}\right))\left(\begin{matrix}\frac{7}{12}\\12\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{4}&\frac{1}{3}\\2&-1\end{matrix}\right))\left(\begin{matrix}\frac{7}{12}\\12\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{\frac{1}{4}\left(-1\right)-\frac{1}{3}\times 2}&-\frac{\frac{1}{3}}{\frac{1}{4}\left(-1\right)-\frac{1}{3}\times 2}\\-\frac{2}{\frac{1}{4}\left(-1\right)-\frac{1}{3}\times 2}&\frac{\frac{1}{4}}{\frac{1}{4}\left(-1\right)-\frac{1}{3}\times 2}\end{matrix}\right)\left(\begin{matrix}\frac{7}{12}\\12\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{11}&\frac{4}{11}\\\frac{24}{11}&-\frac{3}{11}\end{matrix}\right)\left(\begin{matrix}\frac{7}{12}\\12\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{11}\times \frac{7}{12}+\frac{4}{11}\times 12\\\frac{24}{11}\times \frac{7}{12}-\frac{3}{11}\times 12\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-2\end{matrix}\right)
Do the arithmetic.
x=5,y=-2
Extract the matrix elements x and y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}