Solve for a, c, b, m (complex solution)
\left\{\begin{matrix}\\a=-2\text{, }c=-8400\text{, }b=280\text{, }m=0\text{; }a=-2\text{, }c=2800\left(-\sqrt{42}-6\right)\approx -34946.073955542\text{, }b=40\left(\sqrt{42}+7\right)\approx 539.229627936\text{, }m=-\frac{7-\sqrt{42}}{140}\approx -0.003708995\text{; }a=-2\text{, }c=2800\left(\sqrt{42}-6\right)\approx 1346.073955542\text{, }b=40\left(7-\sqrt{42}\right)\approx 20.770372064\text{, }m=-\frac{\sqrt{42}+7}{140}\approx -0.096291005\text{, }&\text{unconditionally}\\a=-2\text{, }c=\frac{11200-b^{2}}{8}\text{, }b\in \mathrm{C}\text{, }m=-\frac{4\left(280-b\right)}{11200-b^{2}}\text{, }&b\neq 280\text{ and }b\neq -40\sqrt{7}\text{ and }b\neq 40\sqrt{7}\text{ and }\left(arg(-\frac{2b\left(280-b\right)}{11200-b^{2}}+1)<\pi \text{ or }arg(\frac{b^{2}-560b+11200}{11200-b^{2}})\geq \pi \right)\end{matrix}\right.
Solve for a, c, b, m
a=-2\text{, }c=-8400\text{, }b=280\text{, }m=0
a=-2\text{, }c=-\frac{b^{2}}{8}+1400\text{, }b=\frac{-2\sqrt{2800m^{2}+280m+1}-2}{m}\text{, }m\in (-\infty,-\frac{\sqrt{42}}{140}-\frac{1}{20}]\cup [\frac{\sqrt{42}}{140}-\frac{1}{20},0)\cup (0,\infty)\text{; }a=-2\text{, }c=-\frac{b^{2}}{8}+1400\text{, }b=\frac{2\sqrt{2800m^{2}+280m+1}-2}{m}\text{, }m\in (-\infty,-\frac{\sqrt{42}}{140}-\frac{1}{20}]\cup [\frac{\sqrt{42}}{140}-\frac{1}{20},0)\cup (0,\infty)
Share
Copied to clipboard
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}