Skip to main content
Solve for x, y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{25}x+\frac{9}{100}y=\frac{1}{20},x+y=300
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\frac{1}{25}x+\frac{9}{100}y=\frac{1}{20}
Choose one of the equations and solve it for x by isolating x on the left hand side of the equal sign.
\frac{1}{25}x=-\frac{9}{100}y+\frac{1}{20}
Subtract \frac{9y}{100} from both sides of the equation.
x=25\left(-\frac{9}{100}y+\frac{1}{20}\right)
Multiply both sides by 25.
x=-\frac{9}{4}y+\frac{5}{4}
Multiply 25 times -\frac{9y}{100}+\frac{1}{20}.
-\frac{9}{4}y+\frac{5}{4}+y=300
Substitute \frac{-9y+5}{4} for x in the other equation, x+y=300.
-\frac{5}{4}y+\frac{5}{4}=300
Add -\frac{9y}{4} to y.
-\frac{5}{4}y=\frac{1195}{4}
Subtract \frac{5}{4} from both sides of the equation.
y=-239
Divide both sides of the equation by -\frac{5}{4}, which is the same as multiplying both sides by the reciprocal of the fraction.
x=-\frac{9}{4}\left(-239\right)+\frac{5}{4}
Substitute -239 for y in x=-\frac{9}{4}y+\frac{5}{4}. Because the resulting equation contains only one variable, you can solve for x directly.
x=\frac{2151+5}{4}
Multiply -\frac{9}{4} times -239.
x=539
Add \frac{5}{4} to \frac{2151}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=539,y=-239
The system is now solved.
\frac{1}{25}x+\frac{9}{100}y=\frac{1}{20},x+y=300
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}\frac{1}{25}&\frac{9}{100}\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}\\300\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}\frac{1}{25}&\frac{9}{100}\\1&1\end{matrix}\right))\left(\begin{matrix}\frac{1}{25}&\frac{9}{100}\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{25}&\frac{9}{100}\\1&1\end{matrix}\right))\left(\begin{matrix}\frac{1}{20}\\300\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}\frac{1}{25}&\frac{9}{100}\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{25}&\frac{9}{100}\\1&1\end{matrix}\right))\left(\begin{matrix}\frac{1}{20}\\300\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{25}&\frac{9}{100}\\1&1\end{matrix}\right))\left(\begin{matrix}\frac{1}{20}\\300\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{\frac{1}{25}-\frac{9}{100}}&-\frac{\frac{9}{100}}{\frac{1}{25}-\frac{9}{100}}\\-\frac{1}{\frac{1}{25}-\frac{9}{100}}&\frac{\frac{1}{25}}{\frac{1}{25}-\frac{9}{100}}\end{matrix}\right)\left(\begin{matrix}\frac{1}{20}\\300\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-20&\frac{9}{5}\\20&-\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}\frac{1}{20}\\300\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-20\times \frac{1}{20}+\frac{9}{5}\times 300\\20\times \frac{1}{20}-\frac{4}{5}\times 300\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}539\\-239\end{matrix}\right)
Do the arithmetic.
x=539,y=-239
Extract the matrix elements x and y.
\frac{1}{25}x+\frac{9}{100}y=\frac{1}{20},x+y=300
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
\frac{1}{25}x+\frac{9}{100}y=\frac{1}{20},\frac{1}{25}x+\frac{1}{25}y=\frac{1}{25}\times 300
To make \frac{x}{25} and x equal, multiply all terms on each side of the first equation by 1 and all terms on each side of the second by \frac{1}{25}.
\frac{1}{25}x+\frac{9}{100}y=\frac{1}{20},\frac{1}{25}x+\frac{1}{25}y=12
Simplify.
\frac{1}{25}x-\frac{1}{25}x+\frac{9}{100}y-\frac{1}{25}y=\frac{1}{20}-12
Subtract \frac{1}{25}x+\frac{1}{25}y=12 from \frac{1}{25}x+\frac{9}{100}y=\frac{1}{20} by subtracting like terms on each side of the equal sign.
\frac{9}{100}y-\frac{1}{25}y=\frac{1}{20}-12
Add \frac{x}{25} to -\frac{x}{25}. Terms \frac{x}{25} and -\frac{x}{25} cancel out, leaving an equation with only one variable that can be solved.
\frac{1}{20}y=\frac{1}{20}-12
Add \frac{9y}{100} to -\frac{y}{25}.
\frac{1}{20}y=-\frac{239}{20}
Add \frac{1}{20} to -12.
y=-239
Multiply both sides by 20.
x-239=300
Substitute -239 for y in x+y=300. Because the resulting equation contains only one variable, you can solve for x directly.
x=539
Add 239 to both sides of the equation.
x=539,y=-239
The system is now solved.