Skip to main content
Solve for y, x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{13}{60}y-\frac{1}{20}x=7,-y+x=60
To solve a pair of equations using substitution, first solve one of the equations for one of the variables. Then substitute the result for that variable in the other equation.
\frac{13}{60}y-\frac{1}{20}x=7
Choose one of the equations and solve it for y by isolating y on the left hand side of the equal sign.
\frac{13}{60}y=\frac{1}{20}x+7
Add \frac{x}{20} to both sides of the equation.
y=\frac{60}{13}\left(\frac{1}{20}x+7\right)
Divide both sides of the equation by \frac{13}{60}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{3}{13}x+\frac{420}{13}
Multiply \frac{60}{13} times \frac{x}{20}+7.
-\left(\frac{3}{13}x+\frac{420}{13}\right)+x=60
Substitute \frac{420+3x}{13} for y in the other equation, -y+x=60.
-\frac{3}{13}x-\frac{420}{13}+x=60
Multiply -1 times \frac{420+3x}{13}.
\frac{10}{13}x-\frac{420}{13}=60
Add -\frac{3x}{13} to x.
\frac{10}{13}x=\frac{1200}{13}
Add \frac{420}{13} to both sides of the equation.
x=120
Divide both sides of the equation by \frac{10}{13}, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{3}{13}\times 120+\frac{420}{13}
Substitute 120 for x in y=\frac{3}{13}x+\frac{420}{13}. Because the resulting equation contains only one variable, you can solve for y directly.
y=\frac{360+420}{13}
Multiply \frac{3}{13} times 120.
y=60
Add \frac{420}{13} to \frac{360}{13} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
y=60,x=120
The system is now solved.
\frac{13}{60}y-\frac{1}{20}x=7,-y+x=60
Put the equations in standard form and then use matrices to solve the system of equations.
\left(\begin{matrix}\frac{13}{60}&-\frac{1}{20}\\-1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}7\\60\end{matrix}\right)
Write the equations in matrix form.
inverse(\left(\begin{matrix}\frac{13}{60}&-\frac{1}{20}\\-1&1\end{matrix}\right))\left(\begin{matrix}\frac{13}{60}&-\frac{1}{20}\\-1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{13}{60}&-\frac{1}{20}\\-1&1\end{matrix}\right))\left(\begin{matrix}7\\60\end{matrix}\right)
Left multiply the equation by the inverse matrix of \left(\begin{matrix}\frac{13}{60}&-\frac{1}{20}\\-1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{13}{60}&-\frac{1}{20}\\-1&1\end{matrix}\right))\left(\begin{matrix}7\\60\end{matrix}\right)
The product of a matrix and its inverse is the identity matrix.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{13}{60}&-\frac{1}{20}\\-1&1\end{matrix}\right))\left(\begin{matrix}7\\60\end{matrix}\right)
Multiply the matrices on the left hand side of the equal sign.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{\frac{13}{60}-\left(-\frac{1}{20}\left(-1\right)\right)}&-\frac{-\frac{1}{20}}{\frac{13}{60}-\left(-\frac{1}{20}\left(-1\right)\right)}\\-\frac{-1}{\frac{13}{60}-\left(-\frac{1}{20}\left(-1\right)\right)}&\frac{\frac{13}{60}}{\frac{13}{60}-\left(-\frac{1}{20}\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}7\\60\end{matrix}\right)
For the 2\times 2 matrix \left(\begin{matrix}a&b\\c&d\end{matrix}\right), the inverse matrix is \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), so the matrix equation can be rewritten as a matrix multiplication problem.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6&\frac{3}{10}\\6&\frac{13}{10}\end{matrix}\right)\left(\begin{matrix}7\\60\end{matrix}\right)
Do the arithmetic.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}6\times 7+\frac{3}{10}\times 60\\6\times 7+\frac{13}{10}\times 60\end{matrix}\right)
Multiply the matrices.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}60\\120\end{matrix}\right)
Do the arithmetic.
y=60,x=120
Extract the matrix elements y and x.
\frac{13}{60}y-\frac{1}{20}x=7,-y+x=60
In order to solve by elimination, coefficients of one of the variables must be the same in both equations so that the variable will cancel out when one equation is subtracted from the other.
-\frac{13}{60}y-\left(-\frac{1}{20}x\right)=-7,\frac{13}{60}\left(-1\right)y+\frac{13}{60}x=\frac{13}{60}\times 60
To make \frac{13y}{60} and -y equal, multiply all terms on each side of the first equation by -1 and all terms on each side of the second by \frac{13}{60}.
-\frac{13}{60}y+\frac{1}{20}x=-7,-\frac{13}{60}y+\frac{13}{60}x=13
Simplify.
-\frac{13}{60}y+\frac{13}{60}y+\frac{1}{20}x-\frac{13}{60}x=-7-13
Subtract -\frac{13}{60}y+\frac{13}{60}x=13 from -\frac{13}{60}y+\frac{1}{20}x=-7 by subtracting like terms on each side of the equal sign.
\frac{1}{20}x-\frac{13}{60}x=-7-13
Add -\frac{13y}{60} to \frac{13y}{60}. Terms -\frac{13y}{60} and \frac{13y}{60} cancel out, leaving an equation with only one variable that can be solved.
-\frac{1}{6}x=-7-13
Add \frac{x}{20} to -\frac{13x}{60}.
-\frac{1}{6}x=-20
Add -7 to -13.
x=120
Multiply both sides by -6.
-y+120=60
Substitute 120 for x in -y+x=60. Because the resulting equation contains only one variable, you can solve for y directly.
-y=-60
Subtract 120 from both sides of the equation.
y=60
Divide both sides by -1.
y=60,x=120
The system is now solved.